Support for torchrl envs
This commit is contained in:
parent
50733bb1a4
commit
0a95ea652a
@ -30,8 +30,7 @@ Fancy RL provides two main components:
|
|||||||
model.train()
|
model.train()
|
||||||
```
|
```
|
||||||
|
|
||||||
For environments, you can pass any [gymnasium](https://gymnasium.farama.org/) or [Fancy Gym](https://alrhub.github.io/fancy_gym/) environment ID as a string, a function returning a gymnasium environment, or an already instantiated gymnasium environment. Future plans include supporting other torchrl environments.
|
For environments, you can pass any [gymnasium](https://gymnasium.farama.org/) or [Fancy Gym](https://alrhub.github.io/fancy_gym/) environment ID as a string, a function returning a gymnasium or torchrl environment, an already instantiated gymnasium or torchrl environment, or a dict that will be passed to gymnasium.make. Check 'example/example.py' for a more complete usage example.
|
||||||
Check 'example/example.py' for a more complete usage example.
|
|
||||||
|
|
||||||
2. **Additional Modules for TRPL**: Designed to integrate with torchrl's primitives-first approach, these modules are ideal for building custom algorithms with precise trust region projections.
|
2. **Additional Modules for TRPL**: Designed to integrate with torchrl's primitives-first approach, these modules are ideal for building custom algorithms with precise trust region projections.
|
||||||
|
|
||||||
|
@ -83,6 +83,8 @@ class OnPolicy(ABC):
|
|||||||
env = env_spec()
|
env = env_spec()
|
||||||
if isinstance(env, gym.Env):
|
if isinstance(env, gym.Env):
|
||||||
env = GymWrapper(env)
|
env = GymWrapper(env)
|
||||||
|
elif isinstance(env, gym.Env):
|
||||||
|
env = GymWrapper(env)
|
||||||
else:
|
else:
|
||||||
raise ValueError("env_spec must be a string or a callable that returns an environment.")
|
raise ValueError("env_spec must be a string or a callable that returns an environment.")
|
||||||
return env
|
return env
|
||||||
|
Loading…
Reference in New Issue
Block a user