Compare commits

..

No commits in common. "5a6069daf468cbdc0bc93762cb691d4ee5c49546" and "bd507c37c34ed566e8fef24eb9f18395c12f4e2d" have entirely different histories.

8 changed files with 184 additions and 129 deletions

View File

@ -23,11 +23,11 @@ Fancy RL provides two main components:
1. **Ready-to-use Classes for PPO / TRPL**: These classes allow you to quickly get started with reinforcement learning algorithms, enjoying the performance and hackability that comes with using TorchRL.
```python
from fancy_rl import PPO, TRPL
from fancy_rl import PPO
model = TRPL("CartPole-v1")
ppo = PPO("CartPole-v1")
model.train()
ppo.train()
```
For environments, you can pass any [gymnasium](https://gymnasium.farama.org/) or [Fancy Gym](https://alrhub.github.io/fancy_gym/) environment ID as a string, a function returning a gymnasium environment, or an already instantiated gymnasium environment. Future plans include supporting other torchrl environments.

View File

@ -1,9 +1,6 @@
import gymnasium
try:
import fancy_gym
except ImportError:
pass
from fancy_rl.ppo import PPO
from fancy_rl.policy import MLPPolicy
from fancy_rl.loggers import TerminalLogger, WandbLogger
from fancy_rl.utils import make_env
__all__ = ["PPO"]
__all__ = ["PPO", "MLPPolicy", "TerminalLogger", "WandbLogger", "make_env"]

View File

@ -1,13 +1,18 @@
import torch
import gymnasium as gym
from abc import ABC, abstractmethod
from torchrl.record.loggers import Logger
from torch.optim import Adam
from torchrl.collectors import SyncDataCollector
from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer
from torchrl.data.replay_buffers.samplers import SamplerWithoutReplacement
from torchrl.envs.libs.gym import GymWrapper
from torchrl.envs import ExplorationType, set_exploration_type
from torchrl.envs.libs.gym import GymWrapper
from torchrl.record import VideoRecorder
from abc import ABC, abstractmethod
import gymnasium as gym
try:
import fancy_gym
except ImportError:
pass
class OnPolicy(ABC):
def __init__(
@ -15,7 +20,6 @@ class OnPolicy(ABC):
policy,
env_spec,
loggers,
optimizers,
learning_rate,
n_steps,
batch_size,
@ -37,7 +41,6 @@ class OnPolicy(ABC):
self.env_spec = env_spec
self.env_spec_eval = env_spec_eval if env_spec_eval is not None else env_spec
self.loggers = loggers
self.optimizers = optimizers
self.learning_rate = learning_rate
self.n_steps = n_steps
self.batch_size = batch_size
@ -87,15 +90,6 @@ class OnPolicy(ABC):
raise ValueError("env_spec must be a string or a callable that returns an environment.")
return env
def train_step(self, batch):
for optimizer in self.optimizers.values():
optimizer.zero_grad()
loss = self.loss_module(batch)
loss.backward()
for optimizer in self.optimizers.values():
optimizer.step()
return loss
def train(self):
collected_frames = 0
@ -142,6 +136,10 @@ class OnPolicy(ABC):
for logger in self.loggers:
logger.log_scalar({"eval_avg_return": avg_return}, step=epoch)
@abstractmethod
def train_step(self, batch):
pass
def dump_video(module):
if isinstance(module, VideoRecorder):
module.dump()

View File

@ -1,59 +1,71 @@
import torch.nn as nn
from tensordict.nn import TensorDictModule
from torchrl.modules import MLP
from tensordict.nn.distributions import NormalParamExtractor
import torch
from torch import nn
from torch.distributions import Categorical, Normal
import gymnasium as gym
class SharedModule(TensorDictModule):
def __init__(self, obs_space, hidden_sizes, activation_fn, device):
if hidden_sizes:
shared_module = MLP(
in_features=obs_space.shape[-1],
out_features=hidden_sizes[-1],
num_cells=hidden_sizes,
activation_class=getattr(nn, activation_fn),
device=device
)
out_features = hidden_sizes[-1]
class Actor(nn.Module):
def __init__(self, observation_space, action_space, hidden_sizes=[64, 64], activation_fn=nn.ReLU):
super().__init__()
self.continuous = isinstance(action_space, gym.spaces.Box)
input_dim = observation_space.shape[-1]
if self.continuous:
output_dim = action_space.shape[-1]
else:
shared_module = nn.Identity()
out_features = obs_space.shape[-1]
output_dim = action_space.n
super().__init__(
module=shared_module,
in_keys=["observation"],
out_keys=["shared"],
)
self.out_features = out_features
layers = []
last_dim = input_dim
for size in hidden_sizes:
layers.append(nn.Linear(last_dim, size))
layers.append(activation_fn())
last_dim = size
if self.continuous:
self.mu_layer = nn.Linear(last_dim, output_dim)
self.log_std_layer = nn.Linear(last_dim, output_dim)
else:
layers.append(nn.Linear(last_dim, output_dim))
self.model = nn.Sequential(*layers)
class Actor(TensorDictModule):
def __init__(self, shared_module, act_space, hidden_sizes, activation_fn, device):
actor_module = nn.Sequential(
MLP(
in_features=shared_module.out_features,
out_features=act_space.shape[-1] * 2,
num_cells=hidden_sizes,
activation_class=getattr(nn, activation_fn),
device=device
),
NormalParamExtractor(),
).to(device)
super().__init__(
module=actor_module,
in_keys=["shared"],
out_keys=["loc", "scale"],
)
def forward(self, x):
if self.continuous:
mu = self.mu_layer(x)
log_std = self.log_std_layer(x)
return mu, log_std.exp()
else:
return self.model(x)
class Critic(TensorDictModule):
def __init__(self, shared_module, hidden_sizes, activation_fn, device):
critic_module = MLP(
in_features=shared_module.out_features,
out_features=1,
num_cells=hidden_sizes,
activation_class=getattr(nn, activation_fn),
device=device
).to(device)
super().__init__(
module=critic_module,
in_keys=["shared"],
out_keys=["state_value"],
)
def act(self, observation, deterministic=False):
with torch.no_grad():
if self.continuous:
mu, std = self.forward(observation)
if deterministic:
action = mu
else:
action_dist = Normal(mu, std)
action = action_dist.sample()
else:
logits = self.forward(observation)
if deterministic:
action = logits.argmax(dim=-1)
else:
action_dist = Categorical(logits=logits)
action = action_dist.sample()
return action
class Critic(nn.Module):
def __init__(self, observation_space, hidden_sizes=[64, 64], activation_fn=nn.ReLU):
super().__init__()
input_dim = observation_space.shape[-1]
layers = []
last_dim = input_dim
for size in hidden_sizes:
layers.append(nn.Linear(last_dim, size))
layers.append(activation_fn())
last_dim = size
layers.append(nn.Linear(last_dim, 1))
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x).squeeze(-1)

View File

@ -1,9 +1,11 @@
import torch
from torchrl.modules import ActorValueOperator, ProbabilisticActor
import torch.nn as nn
from torchrl.objectives import ClipPPOLoss
from torchrl.objectives.value.advantages import GAE
from fancy_rl.on_policy import OnPolicy
from fancy_rl.policy import Actor, Critic, SharedModule
from torchrl.record.loggers import get_logger
from on_policy import OnPolicy
from policy import Actor, Critic
import gymnasium as gym
class PPO(OnPolicy):
def __init__(
@ -12,9 +14,8 @@ class PPO(OnPolicy):
loggers=None,
actor_hidden_sizes=[64, 64],
critic_hidden_sizes=[64, 64],
actor_activation_fn="Tanh",
critic_activation_fn="Tanh",
shared_stem_sizes=[64],
actor_activation_fn="ReLU",
critic_activation_fn="ReLU",
learning_rate=3e-4,
n_steps=2048,
batch_size=64,
@ -32,45 +33,21 @@ class PPO(OnPolicy):
env_spec_eval=None,
eval_episodes=10,
):
device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialize environment to get observation and action space sizes
self.env_spec = env_spec
env = self.make_env()
env = self.make_env(env_spec)
obs_space = env.observation_space
act_space = env.action_space
# Define the shared, actor, and critic modules
self.shared_module = SharedModule(obs_space, shared_stem_sizes, actor_activation_fn, device)
self.actor = Actor(self.shared_module, act_space, actor_hidden_sizes, actor_activation_fn, device)
self.critic = Critic(self.shared_module, critic_hidden_sizes, critic_activation_fn, device)
actor_activation_fn = getattr(nn, actor_activation_fn)
critic_activation_fn = getattr(nn, critic_activation_fn)
# Combine into an ActorValueOperator
self.ac_module = ActorValueOperator(
self.shared_module,
self.actor,
self.critic
)
# Define the policy as a ProbabilisticActor
self.policy = ProbabilisticActor(
module=self.ac_module.get_policy_operator(),
in_keys=["loc", "scale"],
out_keys=["action"],
distribution_class=torch.distributions.Normal,
return_log_prob=True
)
optimizers = {
"actor": torch.optim.Adam(self.actor.parameters(), lr=learning_rate),
"critic": torch.optim.Adam(self.critic.parameters(), lr=learning_rate)
}
self.actor = Actor(obs_space, act_space, hidden_sizes=actor_hidden_sizes, activation_fn=actor_activation_fn)
self.critic = Critic(obs_space, hidden_sizes=critic_hidden_sizes, activation_fn=critic_activation_fn)
super().__init__(
policy=self.policy,
policy=self.actor,
env_spec=env_spec,
loggers=loggers,
optimizers=optimizers,
learning_rate=learning_rate,
n_steps=n_steps,
batch_size=batch_size,
@ -105,3 +82,15 @@ class PPO(OnPolicy):
critic_coef=self.critic_coef,
normalize_advantage=self.normalize_advantage,
)
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=self.learning_rate)
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=self.learning_rate)
def train_step(self, batch):
self.actor_optimizer.zero_grad()
self.critic_optimizer.zero_grad()
loss = self.loss_module(batch)
loss.backward()
self.actor_optimizer.step()
self.critic_optimizer.step()
return loss

View File

@ -1,13 +0,0 @@
[build-system]
requires = ["setuptools", "wheel"]
build-backend = "setuptools.build_meta"
[project]
name = "fancy_rl"
version = "0.1.0"
dependencies = [
"gymnasium",
"pyyaml",
"torch",
"torchrl"
]

19
setup.py Normal file
View File

@ -0,0 +1,19 @@
from setuptools import setup, find_packages
setup(
name="fancy_rl",
version="0.1",
packages=find_packages(),
install_requires=[
"torch",
"torchrl",
"gymnasium",
"pyyaml",
],
entry_points={
"console_scripts": [
"fancy_rl=fancy_rl.example:main",
],
},
)

View File

@ -1 +1,54 @@
# TODO
import pytest
import torch
from fancy_rl.ppo import PPO
from fancy_rl.policy import Policy
from fancy_rl.loggers import TerminalLogger
from fancy_rl.utils import make_env
@pytest.fixture
def policy():
return Policy(input_dim=4, output_dim=2, hidden_sizes=[64, 64])
@pytest.fixture
def loggers():
return [TerminalLogger()]
@pytest.fixture
def env_fn():
return make_env("CartPole-v1")
def test_ppo_train(policy, loggers, env_fn):
ppo = PPO(policy=policy,
env_fn=env_fn,
loggers=loggers,
learning_rate=3e-4,
n_steps=2048,
batch_size=64,
n_epochs=10,
gamma=0.99,
gae_lambda=0.95,
clip_range=0.2,
total_timesteps=10000,
eval_interval=2048,
eval_deterministic=True,
eval_episodes=5,
seed=42)
ppo.train()
def test_ppo_evaluate(policy, loggers, env_fn):
ppo = PPO(policy=policy,
env_fn=env_fn,
loggers=loggers,
learning_rate=3e-4,
n_steps=2048,
batch_size=64,
n_epochs=10,
gamma=0.99,
gae_lambda=0.95,
clip_range=0.2,
total_timesteps=10000,
eval_interval=2048,
eval_deterministic=True,
eval_episodes=5,
seed=42)
ppo.evaluate(epoch=0)