Compare commits

...

2 Commits

Author SHA1 Message Date
c6a12aa27b Started TRPL impl 2024-06-02 11:49:09 +02:00
3931f5e31b Started implementation of TRPL loss objective module 2024-06-02 11:48:51 +02:00
3 changed files with 316 additions and 0 deletions

114
fancy_rl/algos/trpl.py Normal file
View File

@ -0,0 +1,114 @@
import torch
from torchrl.modules import ActorValueOperator, ProbabilisticActor
from torchrl.objectives.value.advantages import GAE
from fancy_rl.algos.on_policy import OnPolicy
from fancy_rl.policy import Actor, Critic, SharedModule
from fancy_rl.objectives import TRPLLoss
class TRPL(OnPolicy):
def __init__(
self,
env_spec,
loggers=None,
actor_hidden_sizes=[64, 64],
critic_hidden_sizes=[64, 64],
actor_activation_fn="Tanh",
critic_activation_fn="Tanh",
shared_stem_sizes=[64],
proj_layer_type=None,
learning_rate=3e-4,
n_steps=2048,
batch_size=64,
n_epochs=10,
gamma=0.99,
gae_lambda=0.95,
total_timesteps=1e6,
eval_interval=2048,
eval_deterministic=True,
entropy_coef=0.01,
critic_coef=0.5,
trust_region_coef=10.0,
normalize_advantage=True,
device=None,
env_spec_eval=None,
eval_episodes=10,
):
device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.trust_region_layer = None # from proj_layer_type
# Initialize environment to get observation and action space sizes
self.env_spec = env_spec
env = self.make_env()
obs_space = env.observation_space
act_space = env.action_space
# Define the shared, actor, and critic modules
self.shared_module = SharedModule(obs_space, shared_stem_sizes, actor_activation_fn, device)
self.raw_actor = Actor(self.shared_module, act_space, actor_hidden_sizes, actor_activation_fn, device)
self.critic = Critic(self.shared_module, critic_hidden_sizes, critic_activation_fn, device)
# Perfrom projection
self.actor = self.raw_actor # TODO: Project
# Combine into an ActorValueOperator
self.ac_module = ActorValueOperator(
self.shared_module,
self.actor,
self.critic
)
# Define the policy as a ProbabilisticActor
policy = ProbabilisticActor(
module=self.ac_module.get_policy_operator(),
in_keys=["loc", "scale"],
out_keys=["action"],
distribution_class=torch.distributions.Normal,
return_log_prob=True
)
optimizers = {
"actor": torch.optim.Adam(self.actor.parameters(), lr=learning_rate),
"critic": torch.optim.Adam(self.critic.parameters(), lr=learning_rate)
}
self.adv_module = GAE(
gamma=self.gamma,
lmbda=self.gae_lambda,
value_network=self.critic,
average_gae=False,
)
self.loss_module = TRPLLoss(
actor_network=self.actor,
critic_network=self.critic,
trust_region_layer=self.trust_region_layer,
loss_critic_type='MSELoss',
entropy_coef=self.entropy_coef,
critic_coef=self.critic_coef,
trust_region_coef=self.trust_region_coef,
normalize_advantage=self.normalize_advantage,
)
super().__init__(
policy=policy,
env_spec=env_spec,
loggers=loggers,
optimizers=optimizers,
learning_rate=learning_rate,
n_steps=n_steps,
batch_size=batch_size,
n_epochs=n_epochs,
gamma=gamma,
gae_lambda=gae_lambda,
total_timesteps=total_timesteps,
eval_interval=eval_interval,
eval_deterministic=eval_deterministic,
entropy_coef=entropy_coef,
critic_coef=critic_coef,
normalize_advantage=normalize_advantage,
clip_range=clip_range,
device=device,
env_spec_eval=env_spec_eval,
eval_episodes=eval_episodes,
)

View File

@ -0,0 +1 @@
from fancy_rl.objectives.trpl import TRPLLoss

201
fancy_rl/objectives/trpl.py Normal file
View File

@ -0,0 +1,201 @@
from __future__ import annotations
import contextlib
import math
from copy import deepcopy
from dataclasses import dataclass
from typing import Tuple
import torch
from tensordict import TensorDict, TensorDictBase, TensorDictParams
from tensordict.nn import (
dispatch,
ProbabilisticTensorDictModule,
ProbabilisticTensorDictSequential,
TensorDictModule,
)
from tensordict.utils import NestedKey
from torch import distributions as d
from torchrl.objectives.common import LossModule
from torchrl.objectives.utils import (
_cache_values,
_clip_value_loss,
_GAMMA_LMBDA_DEPREC_ERROR,
_reduce,
default_value_kwargs,
distance_loss,
ValueEstimators,
)
from torchrl.objectives.value import (
GAE,
TD0Estimator,
TD1Estimator,
TDLambdaEstimator,
VTrace,
)
from torchrl.objectives.ppo import PPOLoss
class TRPLLoss(PPOLoss):
@dataclass
class _AcceptedKeys:
"""Maintains default values for all configurable tensordict keys.
This class defines which tensordict keys can be set using '.set_keys(key_name=key_value)' and their
default values
Attributes:
advantage (NestedKey): The input tensordict key where the advantage is expected.
Will be used for the underlying value estimator. Defaults to ``"advantage"``.
value_target (NestedKey): The input tensordict key where the target state value is expected.
Will be used for the underlying value estimator Defaults to ``"value_target"``.
value (NestedKey): The input tensordict key where the state value is expected.
Will be used for the underlying value estimator. Defaults to ``"state_value"``.
sample_log_prob (NestedKey): The input tensordict key where the
sample log probability is expected. Defaults to ``"sample_log_prob"``.
action (NestedKey): The input tensordict key where the action is expected.
Defaults to ``"action"``.
reward (NestedKey): The input tensordict key where the reward is expected.
Will be used for the underlying value estimator. Defaults to ``"reward"``.
done (NestedKey): The key in the input TensorDict that indicates
whether a trajectory is done. Will be used for the underlying value estimator.
Defaults to ``"done"``.
terminated (NestedKey): The key in the input TensorDict that indicates
whether a trajectory is terminated. Will be used for the underlying value estimator.
Defaults to ``"terminated"``.
"""
advantage: NestedKey = "advantage"
value_target: NestedKey = "value_target"
value: NestedKey = "state_value"
sample_log_prob: NestedKey = "sample_log_prob"
action: NestedKey = "action"
reward: NestedKey = "reward"
done: NestedKey = "done"
terminated: NestedKey = "terminated"
default_keys = _AcceptedKeys()
default_value_estimator = ValueEstimators.GAE
actor_network: TensorDictModule
critic_network: TensorDictModule
actor_network_params: TensorDictParams
critic_network_params: TensorDictParams
target_actor_network_params: TensorDictParams
target_critic_network_params: TensorDictParams
def __init__(
self,
actor_network: ProbabilisticTensorDictSequential | None = None,
critic_network: TensorDictModule | None = None,
trust_region_layer: any | None = None,
entropy_bonus: bool = True,
samples_mc_entropy: int = 1,
entropy_coef: float = 0.01,
critic_coef: float = 1.0,
trust_region_coef: float = 10.0,
loss_critic_type: str = "smooth_l1",
normalize_advantage: bool = False,
gamma: float = None,
separate_losses: bool = False,
reduction: str = None,
clip_value: bool | float | None = None,
**kwargs,
):
self.trust_region_layer = trust_region_layer
self.trust_region_coef = trust_region_coef
super(TRPLLoss, self).__init__(
actor_network,
critic_network,
entropy_bonus=entropy_bonus,
samples_mc_entropy=samples_mc_entropy,
entropy_coef=entropy_coef,
critic_coef=critic_coef,
loss_critic_type=loss_critic_type,
normalize_advantage=normalize_advantage,
gamma=gamma,
separate_losses=separate_losses,
reduction=reduction,
clip_value=clip_value,
**kwargs,
)
@property
def out_keys(self):
if self._out_keys is None:
keys = ["loss_objective"]
if self.entropy_bonus:
keys.extend(["entropy", "loss_entropy"])
if self.loss_critic:
keys.append("loss_critic")
keys.append("ESS")
self._out_keys = keys
return self._out_keys
@out_keys.setter
def out_keys(self, values):
self._out_keys = values
@dispatch
def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
tensordict = tensordict.clone(False)
advantage = tensordict.get(self.tensor_keys.advantage, None)
if advantage is None:
self.value_estimator(
tensordict,
params=self._cached_critic_network_params_detached,
target_params=self.target_critic_network_params,
)
advantage = tensordict.get(self.tensor_keys.advantage)
if self.normalize_advantage and advantage.numel() > 1:
loc = advantage.mean()
scale = advantage.std().clamp_min(1e-6)
advantage = (advantage - loc) / scale
log_weight, dist, kl_approx = self._log_weight(tensordict)
trust_region_loss_unscaled = self._trust_region_loss(tensordict)
# ESS for logging
with torch.no_grad():
# In theory, ESS should be computed on particles sampled from the same source. Here we sample according
# to different, unrelated trajectories, which is not standard. Still it can give a idea of the dispersion
# of the weights.
lw = log_weight.squeeze()
ess = (2 * lw.logsumexp(0) - (2 * lw).logsumexp(0)).exp()
batch = log_weight.shape[0]
surrogate_gain = log_weight.exp() * advantage
trust_region_loss = trust_region_loss_unscaled * self.trust_region_coef
loss = -surrogate_gain + trust_region_loss
td_out = TensorDict({"loss_objective": loss}, batch_size=[])
td_out.set("tr_loss", trust_region_loss)
if self.entropy_bonus:
entropy = self.get_entropy_bonus(dist)
td_out.set("entropy", entropy.detach().mean()) # for logging
td_out.set("kl_approx", kl_approx.detach().mean()) # for logging
td_out.set("loss_entropy", -self.entropy_coef * entropy)
if self.critic_coef:
loss_critic, value_clip_fraction = self.loss_critic(tensordict)
td_out.set("loss_critic", loss_critic)
if value_clip_fraction is not None:
td_out.set("value_clip_fraction", value_clip_fraction)
td_out.set("ESS", _reduce(ess, self.reduction) / batch)
td_out = td_out.named_apply(
lambda name, value: _reduce(value, reduction=self.reduction).squeeze(-1)
if name.startswith("loss_")
else value,
batch_size=[],
)
return td_out
def _trust_region_loss(self, tensordict):
old_distribution =
raw_distribution =
return self.policy_projection.get_trust_region_loss(raw_distribution, old_distribution)