50 lines
1.5 KiB
Python
50 lines
1.5 KiB
Python
|
import jax
|
||
|
import jax.numpy as jnp
|
||
|
import time
|
||
|
from itpal_jax import FrobeniusProjection
|
||
|
|
||
|
def generate_params(key, batch_size, dim):
|
||
|
keys = jax.random.split(key, 2)
|
||
|
return {
|
||
|
"loc": jax.random.normal(keys[0], (batch_size, dim)),
|
||
|
"scale": jax.nn.softplus(jax.random.normal(keys[1], (batch_size, dim)))
|
||
|
}
|
||
|
|
||
|
def main():
|
||
|
# Test parameters
|
||
|
batch_size = 32
|
||
|
dim = 8
|
||
|
n_iterations = 1000
|
||
|
|
||
|
# Initialize projector
|
||
|
proj = FrobeniusProjection(mean_bound=0.1, cov_bound=0.1, contextual_std=True)
|
||
|
|
||
|
# Compile function
|
||
|
proj_fn = lambda p, op: proj.project(p, op)
|
||
|
proj_fn = jax.jit(proj_fn)
|
||
|
|
||
|
# Generate initial key
|
||
|
key = jax.random.PRNGKey(0)
|
||
|
|
||
|
# Warmup
|
||
|
for _ in range(10):
|
||
|
key, subkey1, subkey2 = jax.random.split(key, 3)
|
||
|
params = generate_params(subkey1, batch_size, dim)
|
||
|
old_params = generate_params(subkey2, batch_size, dim)
|
||
|
proj_fn(params, old_params)
|
||
|
|
||
|
# Time projections
|
||
|
start_time = time.time()
|
||
|
for _ in range(n_iterations):
|
||
|
key, subkey1, subkey2 = jax.random.split(key, 3)
|
||
|
params = generate_params(subkey1, batch_size, dim)
|
||
|
old_params = generate_params(subkey2, batch_size, dim)
|
||
|
proj_fn(params, old_params)
|
||
|
end_time = time.time()
|
||
|
|
||
|
print(f"Frobenius Projection:")
|
||
|
print(f"Average time per projection: {(end_time - start_time) / n_iterations * 1000:.3f} ms")
|
||
|
print(f"Total time for {n_iterations} iterations: {end_time - start_time:.3f} s")
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|