2022-06-26 16:39:37 +02:00
|
|
|
import torch as th
|
|
|
|
from torch.distributions.multivariate_normal import _batch_mahalanobis
|
|
|
|
|
|
|
|
|
2022-06-29 12:44:13 +02:00
|
|
|
def mahalanobis_alt(u, v, std):
|
2022-06-26 16:39:37 +02:00
|
|
|
delta = u - v
|
|
|
|
return th.triangular_solve(delta, std, upper=False)[0].pow(2).sum([-2, -1])
|
|
|
|
|
|
|
|
|
2022-06-30 20:40:30 +02:00
|
|
|
def mahalanobis(u, v, chol):
|
2022-06-26 16:39:37 +02:00
|
|
|
delta = u - v
|
2022-06-30 20:40:30 +02:00
|
|
|
return _batch_mahalanobis(chol, delta)
|
2022-06-27 13:44:08 +02:00
|
|
|
|
|
|
|
|
|
|
|
def frob_sq(diff, is_spd=False):
|
2022-06-29 12:44:13 +02:00
|
|
|
# If diff is spd, we can use a (probably) more performant algorithm
|
2022-06-27 13:44:08 +02:00
|
|
|
if is_spd:
|
|
|
|
return _frob_sq_spd(diff)
|
|
|
|
return th.norm(diff, p='fro', dim=tuple(range(1, diff.dim()))).pow(2)
|
|
|
|
|
|
|
|
|
|
|
|
def _frob_sq_spd(diff):
|
|
|
|
return _batch_trace(diff @ diff)
|
|
|
|
|
|
|
|
|
|
|
|
def _batch_trace(x):
|
|
|
|
return th.diagonal(x, dim1=-2, dim2=-1).sum(-1)
|