overriding collect_rollouts

This commit is contained in:
Dominik Moritz Roth 2022-06-25 14:57:27 +02:00
parent 1a49a412c0
commit 866f863d70

View File

@ -10,6 +10,10 @@ from stable_baselines3.common.on_policy_algorithm import OnPolicyAlgorithm
from stable_baselines3.common.policies import ActorCriticCnnPolicy, ActorCriticPolicy, BasePolicy, MultiInputActorCriticPolicy
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
from stable_baselines3.common.utils import explained_variance, get_schedule_fn
from stable_baselines3.common.vec_env import VecEnv
from stable_baselines3.common.buffers import RolloutBuffer
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.utils import obs_as_tensor
class TRL_PG(OnPolicyAlgorithm):
@ -379,3 +383,102 @@ class TRL_PG(OnPolicyAlgorithm):
eval_log_path=eval_log_path,
reset_num_timesteps=reset_num_timesteps,
)
# This is new compared to PPO.
# TRL requires us to also save the original mean and std in our rollouts
def collect_rollouts(
self,
env: VecEnv,
callback: BaseCallback,
rollout_buffer: RolloutBuffer,
n_rollout_steps: int,
) -> bool:
"""
Collect experiences using the current policy and fill a ``RolloutBuffer``.
The term rollout here refers to the model-free notion and should not
be used with the concept of rollout used in model-based RL or planning.
:param env: The training environment
:param callback: Callback that will be called at each step
(and at the beginning and end of the rollout)
:param rollout_buffer: Buffer to fill with rollouts
:param n_steps: Number of experiences to collect per environment
:return: True if function returned with at least `n_rollout_steps`
collected, False if callback terminated rollout prematurely.
"""
assert self._last_obs is not None, "No previous observation was provided"
# Switch to eval mode (this affects batch norm / dropout)
self.policy.set_training_mode(False)
n_steps = 0
rollout_buffer.reset()
# Sample new weights for the state dependent exploration
if self.use_sde:
self.policy.reset_noise(env.num_envs)
callback.on_rollout_start()
while n_steps < n_rollout_steps:
if self.use_sde and self.sde_sample_freq > 0 and n_steps % self.sde_sample_freq == 0:
# Sample a new noise matrix
self.policy.reset_noise(env.num_envs)
with th.no_grad():
# Convert to pytorch tensor or to TensorDict
obs_tensor = obs_as_tensor(self._last_obs, self.device)
actions, values, log_probs = self.policy(obs_tensor)
actions = actions.cpu().numpy()
# Rescale and perform action
clipped_actions = actions
# Clip the actions to avoid out of bound error
if isinstance(self.action_space, gym.spaces.Box):
clipped_actions = np.clip(
actions, self.action_space.low, self.action_space.high)
new_obs, rewards, dones, infos = env.step(clipped_actions)
self.num_timesteps += env.num_envs
# Give access to local variables
callback.update_locals(locals())
if callback.on_step() is False:
return False
self._update_info_buffer(infos)
n_steps += 1
if isinstance(self.action_space, gym.spaces.Discrete):
# Reshape in case of discrete action
actions = actions.reshape(-1, 1)
# Handle timeout by bootstraping with value function
# see GitHub issue #633
for idx, done in enumerate(dones):
if (
done
and infos[idx].get("terminal_observation") is not None
and infos[idx].get("TimeLimit.truncated", False)
):
terminal_obs = self.policy.obs_to_tensor(
infos[idx]["terminal_observation"])[0]
with th.no_grad():
terminal_value = self.policy.predict_values(terminal_obs)[
0]
rewards[idx] += self.gamma * terminal_value
rollout_buffer.add(self._last_obs, actions, rewards,
self._last_episode_starts, values, log_probs)
self._last_obs = new_obs
self._last_episode_starts = dones
with th.no_grad():
# Compute value for the last timestep
values = self.policy.predict_values(
obs_as_tensor(new_obs, self.device))
rollout_buffer.compute_returns_and_advantage(
last_values=values, dones=dones)
callback.on_rollout_end()
return True