Fixed UniversalGaussianDistribution lost SDE when cloning

This commit is contained in:
Dominik Moritz Roth 2022-08-14 18:42:19 +02:00
parent 0ee65e789b
commit bb1f9ecf2b

View File

@ -143,7 +143,7 @@ class UniversalGaussianDistribution(SB3_Distribution):
:param action_dim: Dimension of the action space.
"""
def __init__(self, action_dim: int, use_sde: bool = False, neural_strength: Strength = Strength.DIAG, cov_strength: Strength = Strength.DIAG, parameterization_type: ParametrizationType = ParametrizationType.NONE, enforce_positive_type: EnforcePositiveType = EnforcePositiveType.ABS, prob_squashing_type: ProbSquashingType = ProbSquashingType.NONE, epsilon=1e-6, sde_learn_features=False, full_sde=None):
def __init__(self, action_dim: int, use_sde: bool = False, neural_strength: Strength = Strength.DIAG, cov_strength: Strength = Strength.DIAG, parameterization_type: ParametrizationType = ParametrizationType.NONE, enforce_positive_type: EnforcePositiveType = EnforcePositiveType.ABS, prob_squashing_type: ProbSquashingType = ProbSquashingType.NONE, epsilon=1e-6, sde_learn_features=False):
super(UniversalGaussianDistribution, self).__init__()
self.action_dim = action_dim
self.par_strength = cast_to_enum(neural_strength, Strength)
@ -163,8 +163,7 @@ class UniversalGaussianDistribution(SB3_Distribution):
self.use_sde = use_sde
self.learn_features = sde_learn_features
if full_sde != None:
print('[!] Argument full_sde is only provided to remain compatible with vanilla SB3 PPO. It does not serve any function!')
print('sde', self.use_sde)
assert (self.par_type != ParametrizationType.NONE) == (
self.cov_strength == Strength.FULL), 'You should set an ParameterizationType iff the cov-strength is full'
@ -181,8 +180,8 @@ class UniversalGaussianDistribution(SB3_Distribution):
np = Independent(Normal(mean, chol), 1)
elif isinstance(p, MultivariateNormal):
np = MultivariateNormal(mean, scale_tril=chol)
new = UniversalGaussianDistribution(self.action_dim, neural_strength=self.par_strength, cov_strength=self.cov_strength,
parameterization_type=self.par_type, enforce_positive_type=self.enforce_positive_type, prob_squashing_type=self.prob_squashing_type)
new = UniversalGaussianDistribution(self.action_dim, use_sde=self.use_sde, neural_strength=self.par_strength, cov_strength=self.cov_strength,
parameterization_type=self.par_type, enforce_positive_type=self.enforce_positive_type, prob_squashing_type=self.prob_squashing_type, epsilon=self.epsilon, sde_learn_features=self.learn_features)
new.distribution = np
return new