Trying to converge on simple columbus envs
This commit is contained in:
		
							parent
							
								
									b9303416ac
								
							
						
					
					
						commit
						e71735bf79
					
				
							
								
								
									
										80
									
								
								test.py
									
									
									
									
									
								
							
							
						
						
									
										80
									
								
								test.py
									
									
									
									
									
								
							@ -2,91 +2,61 @@ import gym
 | 
			
		||||
from gym.envs.registration import register
 | 
			
		||||
import numpy as np
 | 
			
		||||
import time
 | 
			
		||||
import datetime
 | 
			
		||||
 | 
			
		||||
from stable_baselines3 import SAC, PPO, A2C
 | 
			
		||||
from stable_baselines3.common.evaluation import evaluate_policy
 | 
			
		||||
from stable_baselines3.common.policies import ActorCriticCnnPolicy, ActorCriticPolicy, MultiInputActorCriticPolicy
 | 
			
		||||
 | 
			
		||||
from sb3_trl.trl_pg import TRL_PG
 | 
			
		||||
from columbus import env
 | 
			
		||||
import columbus
 | 
			
		||||
 | 
			
		||||
register(
 | 
			
		||||
    id='ColumbusTestRay-v0',
 | 
			
		||||
    entry_point=env.ColumbusTestRay,
 | 
			
		||||
    max_episode_steps=30*60*5,
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
def main():
 | 
			
		||||
    #env = gym.make("LunarLander-v2")
 | 
			
		||||
    env = gym.make("ColumbusTestRay-v0")
 | 
			
		||||
 | 
			
		||||
    ppo = PPO(
 | 
			
		||||
        "MlpPolicy",
 | 
			
		||||
        env,
 | 
			
		||||
        verbose=1,
 | 
			
		||||
        tensorboard_log="./logs_tb/test/ppo",
 | 
			
		||||
        use_sde=False,
 | 
			
		||||
        ent_coef=0.0001,
 | 
			
		||||
        learning_rate=0.0004
 | 
			
		||||
    )
 | 
			
		||||
    ppo_base_sde = PPO(
 | 
			
		||||
        "MlpPolicy",
 | 
			
		||||
        env,
 | 
			
		||||
        verbose=1,
 | 
			
		||||
        tensorboard_log="./logs_tb/test/ppo_base_sde/",
 | 
			
		||||
        use_sde=True,
 | 
			
		||||
        sde_sample_freq=30*20,
 | 
			
		||||
        sde_net_arch=[],
 | 
			
		||||
        ent_coef=0.000001,
 | 
			
		||||
        learning_rate=0.0003
 | 
			
		||||
    )
 | 
			
		||||
def main(env_name='ColumbusEasyObstacles-v0'):
 | 
			
		||||
    env = gym.make(env_name)
 | 
			
		||||
    ppo_latent_sde = PPO(
 | 
			
		||||
        "MlpPolicy",
 | 
			
		||||
        env,
 | 
			
		||||
        verbose=1,
 | 
			
		||||
        tensorboard_log="./logs_tb/test/ppo_latent_sde/",
 | 
			
		||||
        tensorboard_log="./logs_tb/"+env_name+"/ppo_latent_sde/",
 | 
			
		||||
        use_sde=True,
 | 
			
		||||
        sde_sample_freq=30*20,
 | 
			
		||||
        ent_coef=0.000001,
 | 
			
		||||
        learning_rate=0.0003
 | 
			
		||||
    )
 | 
			
		||||
    a2c = A2C(
 | 
			
		||||
        "MlpPolicy",
 | 
			
		||||
        env,
 | 
			
		||||
        verbose=1,
 | 
			
		||||
        tensorboard_log="./logs_tb/test/a2c/",
 | 
			
		||||
    )
 | 
			
		||||
    trl = TRL_PG(
 | 
			
		||||
        "MlpPolicy",
 | 
			
		||||
        env,
 | 
			
		||||
        verbose=0,
 | 
			
		||||
        tensorboard_log="./logs_tb/test/trl_pg/",
 | 
			
		||||
        sde_sample_freq=30*15,
 | 
			
		||||
        ent_coef=0.0032,
 | 
			
		||||
        vf_coef=0.0005,
 | 
			
		||||
        gamma=0.95,
 | 
			
		||||
        learning_rate=0.02
 | 
			
		||||
    )
 | 
			
		||||
    #trl = TRL_PG(
 | 
			
		||||
    #    "MlpPolicy",
 | 
			
		||||
    #    env,
 | 
			
		||||
    #    verbose=0,
 | 
			
		||||
    #    tensorboard_log="./logs_tb/"+env_name+"/trl_pg/",
 | 
			
		||||
    #)
 | 
			
		||||
 | 
			
		||||
    #print('PPO:')
 | 
			
		||||
    #testModel(ppo, 500000, showRes = True, saveModel=True, n_eval_episodes=4)
 | 
			
		||||
    print('PPO_BASE_SDE:')
 | 
			
		||||
    testModel(ppo_base_sde, 200000, showRes = True, saveModel=True, n_eval_episodes=0)
 | 
			
		||||
    #print('A2C:')
 | 
			
		||||
    #testModel(a2c, showRes = True)
 | 
			
		||||
    print('PPO_LATENT_SDE:')
 | 
			
		||||
    testModel(ppo_latent_sde, 100000, showRes = True, saveModel=True, n_eval_episodes=0)
 | 
			
		||||
    #print('TRL_PG:')
 | 
			
		||||
    #testModel(trl)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def testModel(model, timesteps=100000, showRes=False, saveModel=False, n_eval_episodes=16):
 | 
			
		||||
def testModel(model, timesteps=150000, showRes=False, saveModel=False, n_eval_episodes=16):
 | 
			
		||||
    env = model.get_env()
 | 
			
		||||
    model.learn(timesteps)
 | 
			
		||||
 | 
			
		||||
    if saveModel:
 | 
			
		||||
        now = datetime.datetime.now().strftime('%d.%m.%Y-%H:%M')
 | 
			
		||||
        model.save(model.tensorboard_log.replace('./logs_tb/','').replace('/','_')+now+'.zip')
 | 
			
		||||
 | 
			
		||||
    if n_eval_episodes:
 | 
			
		||||
        mean_reward, std_reward = evaluate_policy(model, env, n_eval_episodes=n_eval_episodes, deterministic=False)
 | 
			
		||||
        print('Reward: '+str(round(mean_reward,3))+'±'+str(round(std_reward,2)))
 | 
			
		||||
 | 
			
		||||
    if showRes:
 | 
			
		||||
        model.save("model")
 | 
			
		||||
        input('<ready?>')
 | 
			
		||||
        obs = env.reset()
 | 
			
		||||
        # Evaluate the agent
 | 
			
		||||
        episode_reward = 0
 | 
			
		||||
        for _ in range(1000):
 | 
			
		||||
        for _ in range(30*60*5):
 | 
			
		||||
            time.sleep(1/30)
 | 
			
		||||
            action, _ = model.predict(obs, deterministic=False)
 | 
			
		||||
            obs, reward, done, info = env.step(action)
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user