More precise obs space for point mazes
This commit is contained in:
parent
c9ebb1e2c7
commit
083d6f8dc8
@ -2,7 +2,6 @@ import gym
|
|||||||
|
|
||||||
from mujoco_maze.maze_task import TaskRegistry
|
from mujoco_maze.maze_task import TaskRegistry
|
||||||
|
|
||||||
|
|
||||||
MAZE_IDS = ["Maze", "Push", "Fall", "4Rooms"] # TODO: Block, BlockMaze
|
MAZE_IDS = ["Maze", "Push", "Fall", "4Rooms"] # TODO: Block, BlockMaze
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,10 +1,10 @@
|
|||||||
"""Common API definition for Ant and Point.
|
"""Common API definition for Ant and Point.
|
||||||
"""
|
"""
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
from gym.envs.mujoco.mujoco_env import MujocoEnv
|
from gym.envs.mujoco.mujoco_env import MujocoEnv
|
||||||
from gym.utils import EzPickle
|
from gym.utils import EzPickle
|
||||||
from mujoco_py import MjSimState
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
|
|
||||||
class AgentModel(ABC, MujocoEnv, EzPickle):
|
class AgentModel(ABC, MujocoEnv, EzPickle):
|
||||||
@ -15,15 +15,6 @@ class AgentModel(ABC, MujocoEnv, EzPickle):
|
|||||||
MujocoEnv.__init__(self, file_path, frame_skip)
|
MujocoEnv.__init__(self, file_path, frame_skip)
|
||||||
EzPickle.__init__(self)
|
EzPickle.__init__(self)
|
||||||
|
|
||||||
def set_state_without_forward(self, qpos, qvel):
|
|
||||||
assert qpos.shape == (self.model.nq,) and qvel.shape == (self.model.nv,)
|
|
||||||
old_state = self.sim.get_state()
|
|
||||||
new_state = MjSimState(
|
|
||||||
old_state.time, qpos, qvel, old_state.act, old_state.udd_state
|
|
||||||
)
|
|
||||||
self.sim.set_state(new_state)
|
|
||||||
self.sim.forward()
|
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def _get_obs(self) -> np.ndarray:
|
def _get_obs(self) -> np.ndarray:
|
||||||
"""Returns the observation from the model.
|
"""Returns the observation from the model.
|
||||||
|
@ -16,6 +16,8 @@
|
|||||||
"""Wrapper for creating the ant environment in gym_mujoco."""
|
"""Wrapper for creating the ant environment in gym_mujoco."""
|
||||||
|
|
||||||
import math
|
import math
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from mujoco_maze.agent_model import AgentModel
|
from mujoco_maze.agent_model import AgentModel
|
||||||
@ -37,39 +39,23 @@ class AntEnv(AgentModel):
|
|||||||
FILE = "ant.xml"
|
FILE = "ant.xml"
|
||||||
ORI_IND = 3
|
ORI_IND = 3
|
||||||
|
|
||||||
def __init__(
|
def __init__(self, file_path: Optional[str] = None) -> None:
|
||||||
self,
|
|
||||||
file_path=None,
|
|
||||||
expose_all_qpos=True,
|
|
||||||
expose_body_coms=None,
|
|
||||||
expose_body_comvels=None,
|
|
||||||
):
|
|
||||||
self._expose_all_qpos = expose_all_qpos
|
|
||||||
self._expose_body_coms = expose_body_coms
|
|
||||||
self._expose_body_comvels = expose_body_comvels
|
|
||||||
self._body_com_indices = {}
|
|
||||||
self._body_comvel_indices = {}
|
|
||||||
|
|
||||||
super().__init__(file_path, 5)
|
super().__init__(file_path, 5)
|
||||||
|
|
||||||
def _step(self, a):
|
def step(self, action: np.ndarray) -> Tuple[np.ndarray, float, bool, dict]:
|
||||||
return self.step(a)
|
|
||||||
|
|
||||||
def step(self, a):
|
|
||||||
xposbefore = self.get_body_com("torso")[0]
|
xposbefore = self.get_body_com("torso")[0]
|
||||||
self.do_simulation(a, self.frame_skip)
|
self.do_simulation(action, self.frame_skip)
|
||||||
xposafter = self.get_body_com("torso")[0]
|
xposafter = self.get_body_com("torso")[0]
|
||||||
forward_reward = (xposafter - xposbefore) / self.dt
|
forward_reward = (xposafter - xposbefore) / self.dt
|
||||||
ctrl_cost = 0.5 * np.square(a).sum()
|
ctrl_cost = 0.5 * np.square(action).sum()
|
||||||
survive_reward = 1.0
|
survive_reward = 1.0
|
||||||
reward = forward_reward - ctrl_cost + survive_reward
|
reward = forward_reward - ctrl_cost + survive_reward
|
||||||
_ = self.state_vector()
|
_ = self.state_vector()
|
||||||
done = False
|
|
||||||
ob = self._get_obs()
|
ob = self._get_obs()
|
||||||
return (
|
return (
|
||||||
ob,
|
ob,
|
||||||
reward,
|
reward,
|
||||||
done,
|
False,
|
||||||
dict(
|
dict(
|
||||||
reward_forward=forward_reward,
|
reward_forward=forward_reward,
|
||||||
reward_ctrl=-ctrl_cost,
|
reward_ctrl=-ctrl_cost,
|
||||||
@ -79,34 +65,12 @@ class AntEnv(AgentModel):
|
|||||||
|
|
||||||
def _get_obs(self):
|
def _get_obs(self):
|
||||||
# No cfrc observation
|
# No cfrc observation
|
||||||
if self._expose_all_qpos:
|
return np.concatenate(
|
||||||
obs = np.concatenate(
|
[
|
||||||
[
|
self.sim.data.qpos.flat[:15], # Ensures only ant obs.
|
||||||
self.sim.data.qpos.flat[:15], # Ensures only ant obs.
|
self.sim.data.qvel.flat[:14],
|
||||||
self.sim.data.qvel.flat[:14],
|
]
|
||||||
]
|
)
|
||||||
)
|
|
||||||
else:
|
|
||||||
obs = np.concatenate(
|
|
||||||
[self.sim.data.qpos.flat[2:15], self.sim.data.qvel.flat[:14],]
|
|
||||||
)
|
|
||||||
|
|
||||||
if self._expose_body_coms is not None:
|
|
||||||
for name in self._expose_body_coms:
|
|
||||||
com = self.get_body_com(name)
|
|
||||||
if name not in self._body_com_indices:
|
|
||||||
indices = range(len(obs), len(obs) + len(com))
|
|
||||||
self._body_com_indices[name] = indices
|
|
||||||
obs = np.concatenate([obs, com])
|
|
||||||
|
|
||||||
if self._expose_body_comvels is not None:
|
|
||||||
for name in self._expose_body_comvels:
|
|
||||||
comvel = self.get_body_comvel(name)
|
|
||||||
if name not in self._body_comvel_indices:
|
|
||||||
indices = range(len(obs), len(obs) + len(comvel))
|
|
||||||
self._body_comvel_indices[name] = indices
|
|
||||||
obs = np.concatenate([obs, comvel])
|
|
||||||
return obs
|
|
||||||
|
|
||||||
def reset_model(self):
|
def reset_model(self):
|
||||||
qpos = self.init_qpos + self.np_random.uniform(
|
qpos = self.init_qpos + self.np_random.uniform(
|
||||||
@ -137,7 +101,7 @@ class AntEnv(AgentModel):
|
|||||||
qpos[1] = xy[1]
|
qpos[1] = xy[1]
|
||||||
|
|
||||||
qvel = self.sim.data.qvel
|
qvel = self.sim.data.qvel
|
||||||
self.set_state_without_forwarding(qpos, qvel)
|
self.set_state(qpos, qvel)
|
||||||
|
|
||||||
def get_xy(self):
|
def get_xy(self):
|
||||||
return np.copy(self.sim.data.qpos[:2])
|
return np.copy(self.sim.data.qpos[:2])
|
||||||
|
@ -13,8 +13,8 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
# ==============================================================================
|
# ==============================================================================
|
||||||
|
|
||||||
from mujoco_maze.maze_env import MazeEnv
|
|
||||||
from mujoco_maze.ant import AntEnv
|
from mujoco_maze.ant import AntEnv
|
||||||
|
from mujoco_maze.maze_env import MazeEnv
|
||||||
|
|
||||||
|
|
||||||
class AntMazeEnv(MazeEnv):
|
class AntMazeEnv(MazeEnv):
|
||||||
|
@ -16,17 +16,16 @@
|
|||||||
"""Adapted from rllab maze_env.py."""
|
"""Adapted from rllab maze_env.py."""
|
||||||
|
|
||||||
import itertools as it
|
import itertools as it
|
||||||
import numpy as np
|
|
||||||
import gym
|
|
||||||
import os
|
import os
|
||||||
import tempfile
|
import tempfile
|
||||||
import xml.etree.ElementTree as ET
|
import xml.etree.ElementTree as ET
|
||||||
|
from typing import Tuple, Type
|
||||||
|
|
||||||
from typing import Type
|
import gym
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from mujoco_maze import maze_env_utils, maze_task
|
||||||
from mujoco_maze.agent_model import AgentModel
|
from mujoco_maze.agent_model import AgentModel
|
||||||
from mujoco_maze import maze_env_utils
|
|
||||||
from mujoco_maze import maze_task
|
|
||||||
|
|
||||||
# Directory that contains mujoco xml files.
|
# Directory that contains mujoco xml files.
|
||||||
MODEL_DIR = os.path.dirname(os.path.abspath(__file__)) + "/assets"
|
MODEL_DIR = os.path.dirname(os.path.abspath(__file__)) + "/assets"
|
||||||
@ -34,9 +33,7 @@ MODEL_DIR = os.path.dirname(os.path.abspath(__file__)) + "/assets"
|
|||||||
|
|
||||||
class MazeEnv(gym.Env):
|
class MazeEnv(gym.Env):
|
||||||
MODEL_CLASS: Type[AgentModel] = AgentModel
|
MODEL_CLASS: Type[AgentModel] = AgentModel
|
||||||
|
|
||||||
MANUAL_COLLISION: bool = False
|
MANUAL_COLLISION: bool = False
|
||||||
BLOCK_EPS: float = 0.0001
|
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
@ -116,7 +113,7 @@ class MazeEnv(gym.Env):
|
|||||||
x = j * size_scaling - torso_x
|
x = j * size_scaling - torso_x
|
||||||
y = i * size_scaling - torso_y
|
y = i * size_scaling - torso_y
|
||||||
h = height / 2 * size_scaling
|
h = height / 2 * size_scaling
|
||||||
size = 0.5 * size_scaling + self.BLOCK_EPS
|
size = 0.5 * size_scaling
|
||||||
ET.SubElement(
|
ET.SubElement(
|
||||||
worldbody,
|
worldbody,
|
||||||
"geom",
|
"geom",
|
||||||
@ -135,7 +132,7 @@ class MazeEnv(gym.Env):
|
|||||||
x = j * size_scaling - torso_x
|
x = j * size_scaling - torso_x
|
||||||
y = i * size_scaling - torso_y
|
y = i * size_scaling - torso_y
|
||||||
h = height / 2 * size_scaling
|
h = height / 2 * size_scaling
|
||||||
size = 0.5 * size_scaling + self.BLOCK_EPS
|
size = 0.5 * size_scaling
|
||||||
ET.SubElement(
|
ET.SubElement(
|
||||||
worldbody,
|
worldbody,
|
||||||
"geom",
|
"geom",
|
||||||
@ -165,7 +162,7 @@ class MazeEnv(gym.Env):
|
|||||||
)
|
)
|
||||||
y = i * size_scaling - torso_y
|
y = i * size_scaling - torso_y
|
||||||
h = height / 2 * size_scaling * height_shrink
|
h = height / 2 * size_scaling * height_shrink
|
||||||
size = 0.5 * size_scaling * shrink + self.BLOCK_EPS
|
size = 0.5 * size_scaling * shrink
|
||||||
movable_body = ET.SubElement(
|
movable_body = ET.SubElement(
|
||||||
worldbody,
|
worldbody,
|
||||||
"body",
|
"body",
|
||||||
@ -264,10 +261,38 @@ class MazeEnv(gym.Env):
|
|||||||
tree.write(file_path)
|
tree.write(file_path)
|
||||||
self.world_tree = tree
|
self.world_tree = tree
|
||||||
self.wrapped_env = self.MODEL_CLASS(*args, file_path=file_path, **kwargs)
|
self.wrapped_env = self.MODEL_CLASS(*args, file_path=file_path, **kwargs)
|
||||||
|
self.observation_space = self._get_obs_space()
|
||||||
|
|
||||||
def get_ori(self):
|
def get_ori(self) -> float:
|
||||||
return self.wrapped_env.get_ori()
|
return self.wrapped_env.get_ori()
|
||||||
|
|
||||||
|
def _get_obs_space(self) -> gym.spaces.Box:
|
||||||
|
shape = self._get_obs().shape
|
||||||
|
high = np.inf * np.ones(shape)
|
||||||
|
low = -high
|
||||||
|
# Set velocity limits
|
||||||
|
wrapped_obs_space = self.wrapped_env.observation_space
|
||||||
|
high[: wrapped_obs_space.shape[0]] = wrapped_obs_space.high
|
||||||
|
low[: wrapped_obs_space.shape[0]] = wrapped_obs_space.low
|
||||||
|
# Set coordinate limits
|
||||||
|
low[0], high[0], low[1], high[1] = self._xy_limits()
|
||||||
|
# Set orientation limits
|
||||||
|
return gym.spaces.Box(low, high)
|
||||||
|
|
||||||
|
def _xy_limits(self) -> Tuple[float, float, float, float]:
|
||||||
|
xmin, ymin, xmax, ymax = 100, 100, -100, -100
|
||||||
|
structure = self._maze_structure
|
||||||
|
for i, j in it.product(range(len(structure)), range(len(structure[0]))):
|
||||||
|
if structure[i][j].is_block():
|
||||||
|
continue
|
||||||
|
xmin, xmax = min(xmin, j), max(xmax, j)
|
||||||
|
ymin, ymax = min(ymin, i), max(ymax, i)
|
||||||
|
x0, y0 = self._init_torso_x, self._init_torso_y
|
||||||
|
scaling = self._maze_size_scaling
|
||||||
|
xmin, xmax = (xmin - 0.5) * scaling - x0, (xmax + 0.5) * scaling - x0
|
||||||
|
ymin, ymax = (ymin - 0.5) * scaling - y0, (ymax + 0.5) * scaling - y0
|
||||||
|
return xmin, xmax, ymin, ymax
|
||||||
|
|
||||||
def get_top_down_view(self):
|
def get_top_down_view(self):
|
||||||
self._view = np.zeros_like(self._view)
|
self._view = np.zeros_like(self._view)
|
||||||
|
|
||||||
@ -492,13 +517,6 @@ class MazeEnv(gym.Env):
|
|||||||
def render(self, *args, **kwargs):
|
def render(self, *args, **kwargs):
|
||||||
return self.wrapped_env.render(*args, **kwargs)
|
return self.wrapped_env.render(*args, **kwargs)
|
||||||
|
|
||||||
@property
|
|
||||||
def observation_space(self):
|
|
||||||
shape = self._get_obs().shape
|
|
||||||
high = np.inf * np.ones(shape)
|
|
||||||
low = -high
|
|
||||||
return gym.spaces.Box(low, high)
|
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def action_space(self):
|
def action_space(self):
|
||||||
return self.wrapped_env.action_space
|
return self.wrapped_env.action_space
|
||||||
@ -531,6 +549,7 @@ class MazeEnv(gym.Env):
|
|||||||
else:
|
else:
|
||||||
inner_next_obs, inner_reward, _, info = self.wrapped_env.step(action)
|
inner_next_obs, inner_reward, _, info = self.wrapped_env.step(action)
|
||||||
next_obs = self._get_obs()
|
next_obs = self._get_obs()
|
||||||
|
inner_reward = self._task.scale_inner_reward(inner_reward)
|
||||||
outer_reward = self._task.reward(next_obs)
|
outer_reward = self._task.reward(next_obs)
|
||||||
done = self._task.termination(next_obs)
|
done = self._task.termination(next_obs)
|
||||||
return next_obs, inner_reward + outer_reward, done, info
|
return next_obs, inner_reward + outer_reward, done, info
|
||||||
|
@ -14,9 +14,10 @@
|
|||||||
# ==============================================================================
|
# ==============================================================================
|
||||||
|
|
||||||
"""Adapted from rllab maze_env_utils.py."""
|
"""Adapted from rllab maze_env_utils.py."""
|
||||||
from enum import Enum
|
|
||||||
import itertools as it
|
import itertools as it
|
||||||
import math
|
import math
|
||||||
|
from enum import Enum
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
@ -112,7 +113,7 @@ class Collision:
|
|||||||
max_x = x_base + size_scaling * offset(pos, 3)
|
max_x = x_base + size_scaling * offset(pos, 3)
|
||||||
self.objects.append((min_y, max_y, min_x, max_x))
|
self.objects.append((min_y, max_y, min_x, max_x))
|
||||||
|
|
||||||
def is_in(self, old_pos, new_pos) -> bool:
|
def is_in(self, old_pos: np.ndarray, new_pos: np.ndarray) -> bool:
|
||||||
# Heuristics to prevent the agent from going through the wall
|
# Heuristics to prevent the agent from going through the wall
|
||||||
for x, y in ((old_pos + new_pos) / 2, new_pos):
|
for x, y in ((old_pos + new_pos) / 2, new_pos):
|
||||||
for min_y, max_y, min_x, max_x in self.objects:
|
for min_y, max_y, min_x, max_x in self.objects:
|
||||||
|
@ -9,6 +9,7 @@ Rgb = Tuple[float, float, float]
|
|||||||
|
|
||||||
RED = (0.7, 0.1, 0.1)
|
RED = (0.7, 0.1, 0.1)
|
||||||
GREEN = (0.1, 0.7, 0.1)
|
GREEN = (0.1, 0.7, 0.1)
|
||||||
|
BLUE = (0.1, 0.1, 0.7)
|
||||||
|
|
||||||
|
|
||||||
class MazeGoal:
|
class MazeGoal:
|
||||||
@ -50,6 +51,9 @@ class MazeTask(ABC):
|
|||||||
return True
|
return True
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
def scale_inner_reward(self, inner_reward: float) -> float:
|
||||||
|
return inner_reward
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def reward(self, obs: np.ndarray) -> float:
|
def reward(self, obs: np.ndarray) -> float:
|
||||||
pass
|
pass
|
||||||
|
@ -16,54 +16,53 @@
|
|||||||
"""Wrapper for creating the ant environment in gym_mujoco."""
|
"""Wrapper for creating the ant environment in gym_mujoco."""
|
||||||
|
|
||||||
import math
|
import math
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
import gym
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from mujoco_maze.agent_model import AgentModel
|
from mujoco_maze.agent_model import AgentModel
|
||||||
|
|
||||||
|
|
||||||
class PointEnv(AgentModel):
|
class PointEnv(AgentModel):
|
||||||
|
VELOCITY_LIMITS: float = 100.0
|
||||||
FILE = "point.xml"
|
FILE = "point.xml"
|
||||||
ORI_IND = 2
|
ORI_IND = 2
|
||||||
|
|
||||||
def __init__(self, file_path=None, expose_all_qpos=True):
|
def __init__(self, file_path: Optional[str] = None):
|
||||||
self._expose_all_qpos = expose_all_qpos
|
|
||||||
super().__init__(file_path, 1)
|
super().__init__(file_path, 1)
|
||||||
|
high = np.inf * np.ones(6)
|
||||||
|
high[3:] = self.VELOCITY_LIMITS
|
||||||
|
high[self.ORI_IND] = np.pi
|
||||||
|
low = -high
|
||||||
|
self.observation_space = gym.spaces.Box(low, high)
|
||||||
|
|
||||||
def _step(self, a):
|
def step(self, action: np.ndarray) -> Tuple[np.ndarray, float, bool, dict]:
|
||||||
return self.step(a)
|
|
||||||
|
|
||||||
def step(self, action):
|
|
||||||
qpos = np.copy(self.sim.data.qpos)
|
qpos = np.copy(self.sim.data.qpos)
|
||||||
qpos[2] += action[1]
|
qpos[2] += action[1]
|
||||||
|
# Clip orientation
|
||||||
|
if qpos[2] < -np.pi:
|
||||||
|
qpos[2] += np.pi * 2
|
||||||
|
elif np.pi < qpos[2]:
|
||||||
|
qpos[2] -= np.pi * 2
|
||||||
ori = qpos[2]
|
ori = qpos[2]
|
||||||
# compute increment in each direction
|
# Compute increment in each direction
|
||||||
dx = math.cos(ori) * action[0]
|
qpos[0] += math.cos(ori) * action[0]
|
||||||
dy = math.sin(ori) * action[0]
|
qpos[1] += math.sin(ori) * action[0]
|
||||||
# ensure that the robot is within reasonable range
|
qvel = np.clip(self.sim.data.qvel, -self.VELOCITY_LIMITS, self.VELOCITY_LIMITS)
|
||||||
qpos[0] = np.clip(qpos[0] + dx, -100, 100)
|
|
||||||
qpos[1] = np.clip(qpos[1] + dy, -100, 100)
|
|
||||||
qvel = self.sim.data.qvel
|
|
||||||
self.set_state(qpos, qvel)
|
self.set_state(qpos, qvel)
|
||||||
for _ in range(0, self.frame_skip):
|
for _ in range(0, self.frame_skip):
|
||||||
self.sim.step()
|
self.sim.step()
|
||||||
next_obs = self._get_obs()
|
next_obs = self._get_obs()
|
||||||
reward = 0
|
return next_obs, 0.0, False, {}
|
||||||
done = False
|
|
||||||
info = {}
|
|
||||||
return next_obs, reward, done, info
|
|
||||||
|
|
||||||
def _get_obs(self):
|
def _get_obs(self):
|
||||||
if self._expose_all_qpos:
|
return np.concatenate(
|
||||||
return np.concatenate(
|
[
|
||||||
[
|
self.sim.data.qpos.flat[:3], # Only point-relevant coords.
|
||||||
self.sim.data.qpos.flat[:3], # Only point-relevant coords.
|
self.sim.data.qvel.flat[:3],
|
||||||
self.sim.data.qvel.flat[:3],
|
]
|
||||||
]
|
)
|
||||||
)
|
|
||||||
else:
|
|
||||||
return np.concatenate(
|
|
||||||
[self.sim.data.qpos.flat[2:3], self.sim.data.qvel.flat[:3]]
|
|
||||||
)
|
|
||||||
|
|
||||||
def reset_model(self):
|
def reset_model(self):
|
||||||
qpos = self.init_qpos + self.np_random.uniform(
|
qpos = self.init_qpos + self.np_random.uniform(
|
||||||
@ -86,7 +85,7 @@ class PointEnv(AgentModel):
|
|||||||
qpos[1] = xy[1]
|
qpos[1] = xy[1]
|
||||||
|
|
||||||
qvel = self.sim.data.qvel
|
qvel = self.sim.data.qvel
|
||||||
self.set_state_without_forward(qpos, qvel)
|
self.set_state(qpos, qvel)
|
||||||
|
|
||||||
def get_ori(self):
|
def get_ori(self):
|
||||||
return self.sim.data.qpos[self.ORI_IND]
|
return self.sim.data.qpos[self.ORI_IND]
|
||||||
|
@ -1,7 +1,8 @@
|
|||||||
import gym
|
import gym
|
||||||
import mujoco_maze
|
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
|
import mujoco_maze
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize("maze_id", mujoco_maze.MAZE_IDS)
|
@pytest.mark.parametrize("maze_id", mujoco_maze.MAZE_IDS)
|
||||||
def test_ant_maze(maze_id):
|
def test_ant_maze(maze_id):
|
||||||
|
Loading…
Reference in New Issue
Block a user