Merge pull request #13 from DigitalRev0lution/gym-v0.26.0
adjust for gym0.26.0
This commit is contained in:
commit
fde62d9903
@ -6,6 +6,7 @@ from typing import Optional
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from gym.envs.mujoco.mujoco_env import MujocoEnv
|
from gym.envs.mujoco.mujoco_env import MujocoEnv
|
||||||
from gym.utils import EzPickle
|
from gym.utils import EzPickle
|
||||||
|
from gym.spaces import Space
|
||||||
|
|
||||||
|
|
||||||
class AgentModel(ABC, MujocoEnv, EzPickle):
|
class AgentModel(ABC, MujocoEnv, EzPickle):
|
||||||
@ -15,8 +16,8 @@ class AgentModel(ABC, MujocoEnv, EzPickle):
|
|||||||
RADIUS: Optional[float] = None
|
RADIUS: Optional[float] = None
|
||||||
OBJBALL_TYPE: Optional[str] = None
|
OBJBALL_TYPE: Optional[str] = None
|
||||||
|
|
||||||
def __init__(self, file_path: str, frame_skip: int) -> None:
|
def __init__(self, file_path: str, frame_skip: int, observation_space: Space) -> None:
|
||||||
MujocoEnv.__init__(self, file_path, frame_skip)
|
MujocoEnv.__init__(self, file_path, frame_skip, observation_space)
|
||||||
EzPickle.__init__(self)
|
EzPickle.__init__(self)
|
||||||
|
|
||||||
def close(self):
|
def close(self):
|
||||||
|
@ -18,6 +18,8 @@ import numpy as np
|
|||||||
from mujoco_maze import maze_env_utils, maze_task
|
from mujoco_maze import maze_env_utils, maze_task
|
||||||
from mujoco_maze.agent_model import AgentModel
|
from mujoco_maze.agent_model import AgentModel
|
||||||
|
|
||||||
|
from gym.core import ObsType
|
||||||
|
|
||||||
# Directory that contains mujoco xml files.
|
# Directory that contains mujoco xml files.
|
||||||
MODEL_DIR = os.path.dirname(os.path.abspath(__file__)) + "/assets"
|
MODEL_DIR = os.path.dirname(os.path.abspath(__file__)) + "/assets"
|
||||||
|
|
||||||
@ -366,7 +368,7 @@ class MazeEnv(gym.Env):
|
|||||||
obs = np.concatenate([wrapped_obs[:3]] + additional_obs + [wrapped_obs[3:]])
|
obs = np.concatenate([wrapped_obs[:3]] + additional_obs + [wrapped_obs[3:]])
|
||||||
return np.concatenate([obs, *view, np.array([self.t * 0.001])])
|
return np.concatenate([obs, *view, np.array([self.t * 0.001])])
|
||||||
|
|
||||||
def reset(self) -> np.ndarray:
|
def reset(self, **kwargs) -> Tuple[ObsType, dict]:
|
||||||
self.t = 0
|
self.t = 0
|
||||||
self.wrapped_env.reset()
|
self.wrapped_env.reset()
|
||||||
# Samples a new goal
|
# Samples a new goal
|
||||||
@ -376,7 +378,8 @@ class MazeEnv(gym.Env):
|
|||||||
if len(self._init_positions) > 1:
|
if len(self._init_positions) > 1:
|
||||||
xy = np.random.choice(self._init_positions)
|
xy = np.random.choice(self._init_positions)
|
||||||
self.wrapped_env.set_xy(xy)
|
self.wrapped_env.set_xy(xy)
|
||||||
return self._get_obs()
|
info = {}
|
||||||
|
return self._get_obs(), info
|
||||||
|
|
||||||
def set_marker(self) -> None:
|
def set_marker(self) -> None:
|
||||||
for i, goal in enumerate(self._task.goals):
|
for i, goal in enumerate(self._task.goals):
|
||||||
@ -410,10 +413,11 @@ class MazeEnv(gym.Env):
|
|||||||
self._websock_server_pipe = start_server(self._websock_port)
|
self._websock_server_pipe = start_server(self._websock_port)
|
||||||
return self._websock_server_pipe.send(self._render_image())
|
return self._websock_server_pipe.send(self._render_image())
|
||||||
else:
|
else:
|
||||||
|
self.wrapped_env.render_mode = mode
|
||||||
if self.wrapped_env.viewer is None:
|
if self.wrapped_env.viewer is None:
|
||||||
self.wrapped_env.render(mode, **kwargs)
|
self.wrapped_env.render()
|
||||||
self._maybe_move_camera(self.wrapped_env.viewer)
|
self._maybe_move_camera(self.wrapped_env.viewer)
|
||||||
return self.wrapped_env.render(mode, **kwargs)
|
return self.wrapped_env.render()
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def action_space(self):
|
def action_space(self):
|
||||||
|
@ -9,12 +9,22 @@ Based on `models`_ and `rllab`_.
|
|||||||
from typing import Optional, Tuple
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
import gym
|
import gym
|
||||||
|
import mujoco
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from mujoco_maze.agent_model import AgentModel
|
from mujoco_maze.agent_model import AgentModel
|
||||||
|
|
||||||
|
|
||||||
class PointEnv(AgentModel):
|
class PointEnv(AgentModel):
|
||||||
|
metadata = {
|
||||||
|
"render_modes": [
|
||||||
|
"human",
|
||||||
|
"rgb_array",
|
||||||
|
"depth_array",
|
||||||
|
],
|
||||||
|
"render_fps": 50,
|
||||||
|
}
|
||||||
|
|
||||||
FILE: str = "point.xml"
|
FILE: str = "point.xml"
|
||||||
ORI_IND: int = 2
|
ORI_IND: int = 2
|
||||||
MANUAL_COLLISION: bool = True
|
MANUAL_COLLISION: bool = True
|
||||||
@ -24,15 +34,15 @@ class PointEnv(AgentModel):
|
|||||||
VELOCITY_LIMITS: float = 10.0
|
VELOCITY_LIMITS: float = 10.0
|
||||||
|
|
||||||
def __init__(self, file_path: Optional[str] = None) -> None:
|
def __init__(self, file_path: Optional[str] = None) -> None:
|
||||||
super().__init__(file_path, 1)
|
|
||||||
high = np.inf * np.ones(6, dtype=np.float32)
|
high = np.inf * np.ones(6, dtype=np.float32)
|
||||||
high[3:] = self.VELOCITY_LIMITS * 1.2
|
high[3:] = self.VELOCITY_LIMITS * 1.2
|
||||||
high[self.ORI_IND] = np.pi
|
high[self.ORI_IND] = np.pi
|
||||||
low = -high
|
low = -high
|
||||||
self.observation_space = gym.spaces.Box(low, high)
|
observation_space = gym.spaces.Box(low, high)
|
||||||
|
super().__init__(file_path, 1, observation_space)
|
||||||
|
|
||||||
def step(self, action: np.ndarray) -> Tuple[np.ndarray, float, bool, dict]:
|
def step(self, action: np.ndarray) -> Tuple[np.ndarray, float, bool, dict]:
|
||||||
qpos = self.sim.data.qpos.copy()
|
qpos = self.data.qpos.copy()
|
||||||
qpos[2] += action[1]
|
qpos[2] += action[1]
|
||||||
# Clip orientation
|
# Clip orientation
|
||||||
if qpos[2] < -np.pi:
|
if qpos[2] < -np.pi:
|
||||||
@ -43,26 +53,26 @@ class PointEnv(AgentModel):
|
|||||||
# Compute increment in each direction
|
# Compute increment in each direction
|
||||||
qpos[0] += np.cos(ori) * action[0]
|
qpos[0] += np.cos(ori) * action[0]
|
||||||
qpos[1] += np.sin(ori) * action[0]
|
qpos[1] += np.sin(ori) * action[0]
|
||||||
qvel = np.clip(self.sim.data.qvel, -self.VELOCITY_LIMITS, self.VELOCITY_LIMITS)
|
qvel = np.clip(self.data.qvel, -self.VELOCITY_LIMITS, self.VELOCITY_LIMITS)
|
||||||
self.set_state(qpos, qvel)
|
self.set_state(qpos, qvel)
|
||||||
for _ in range(0, self.frame_skip):
|
for _ in range(0, self.frame_skip):
|
||||||
self.sim.step()
|
mujoco.mj_step(self.model, self.data)
|
||||||
next_obs = self._get_obs()
|
next_obs = self._get_obs()
|
||||||
return next_obs, 0.0, False, {}
|
return next_obs, 0.0, False, {}
|
||||||
|
|
||||||
def _get_obs(self):
|
def _get_obs(self):
|
||||||
return np.concatenate(
|
return np.concatenate(
|
||||||
[
|
[
|
||||||
self.sim.data.qpos.flat[:3], # Only point-relevant coords.
|
self.data.qpos.flat[:3], # Only point-relevant coords.
|
||||||
self.sim.data.qvel.flat[:3],
|
self.data.qvel.flat[:3],
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
|
||||||
def reset_model(self):
|
def reset_model(self):
|
||||||
qpos = self.init_qpos + self.np_random.uniform(
|
qpos = self.init_qpos + self.np_random.uniform(
|
||||||
size=self.sim.model.nq, low=-0.1, high=0.1
|
size=self.model.nq, low=-0.1, high=0.1
|
||||||
)
|
)
|
||||||
qvel = self.init_qvel + self.np_random.randn(self.sim.model.nv) * 0.1
|
qvel = self.init_qvel + self.np_random.random(self.model.nv) * 0.1
|
||||||
|
|
||||||
# Set everything other than point to original position and 0 velocity.
|
# Set everything other than point to original position and 0 velocity.
|
||||||
qpos[3:] = self.init_qpos[3:]
|
qpos[3:] = self.init_qpos[3:]
|
||||||
@ -71,12 +81,12 @@ class PointEnv(AgentModel):
|
|||||||
return self._get_obs()
|
return self._get_obs()
|
||||||
|
|
||||||
def get_xy(self):
|
def get_xy(self):
|
||||||
return self.sim.data.qpos[:2].copy()
|
return self.data.qpos[:2].copy()
|
||||||
|
|
||||||
def set_xy(self, xy: np.ndarray) -> None:
|
def set_xy(self, xy: np.ndarray) -> None:
|
||||||
qpos = self.sim.data.qpos.copy()
|
qpos = self.data.qpos.copy()
|
||||||
qpos[:2] = xy
|
qpos[:2] = xy
|
||||||
self.set_state(qpos, self.sim.data.qvel)
|
self.set_state(qpos, self.data.qvel)
|
||||||
|
|
||||||
def get_ori(self):
|
def get_ori(self):
|
||||||
return self.sim.data.qpos[self.ORI_IND]
|
return self.data.qpos[self.ORI_IND]
|
||||||
|
Loading…
Reference in New Issue
Block a user