Wider timeline iter & beautify

This commit is contained in:
Dominik Moritz Roth 2022-05-18 19:02:51 +02:00
parent 6967243ae2
commit 4a018638d5

View File

@ -1,3 +1,7 @@
if __name__ == '__main__':
print('[!] VacuumDecay should not be started directly')
exit()
import os
import io
import time
@ -17,6 +21,7 @@ import random
import datetime
import pickle
class Action():
# Should hold the data representing an action
# Actions are applied to a State in State.mutate
@ -37,6 +42,7 @@ class Action():
# should start with < and end with >
return "<P"+str(self.player)+"-"+str(self.data)+">"
class State(ABC):
# Hold a representation of the current game-state
# Allows retriving avaible actions (getAvaibleActions) and applying them (mutate)
@ -99,7 +105,7 @@ class State(ABC):
@abstractmethod
def getTensor(self, player=None, phase='default'):
if player==None:
if player == None:
player = self.curPlayer
return torch.tensor([0])
@ -110,6 +116,7 @@ class State(ABC):
def getScoreNeural(self, model, player=None, phase='default'):
return model(self.getTensor(player=player, phase=phase)).item()
class Universe():
def __init__(self):
self.scoreProvider = 'naive'
@ -129,10 +136,12 @@ class Universe():
def activateEdge(self, head):
pass
@dataclass(order=True)
class PQItem:
priority: int
data: Any=field(compare=False)
data: Any = field(compare=False)
class QueueingUniverse(Universe):
def __init__(self):
@ -140,8 +149,8 @@ class QueueingUniverse(Universe):
self.pq = PriorityQueue()
def newOpen(self, node):
item = PQItem(node.getPriority(), node)
self.pq.put(item)
item = PQItem(node.getPriority(), node)
self.pq.put(item)
def merge(self, node):
self.newOpen(node)
@ -164,7 +173,7 @@ class QueueingUniverse(Universe):
class Node():
def __init__(self, state, universe=None, parent=None, lastAction=None):
self.state = state
if universe==None:
if universe == None:
print('[!] No Universe defined. Spawning one...')
universe = Universe()
self.universe = universe
@ -175,7 +184,7 @@ class Node():
self._scores = [None]*self.state.playersNum
self._strongs = [None]*self.state.playersNum
self._alive = True
self._cascadeMemory = 0 # Used for our alternative to alpha-beta pruning
self._cascadeMemory = 0 # Used for our alternative to alpha-beta pruning
def kill(self):
self._alive = False
@ -193,31 +202,34 @@ class Node():
self._childs = []
actions = self.state.getAvaibleActions()
for action in actions:
newNode = Node(self.state.mutate(action), self.universe, self, action)
newNode = Node(self.state.mutate(action),
self.universe, self, action)
self._childs.append(self.universe.merge(newNode))
def getStrongFor(self, player):
if self._strongs[player]!=None:
if self._strongs[player] != None:
return self._strongs[player]
else:
return self.getScoreFor(player)
def _pullStrong(self): # Currently Expecti-Max
def _pullStrong(self): # Currently Expecti-Max
strongs = [None]*self.playersNum
for p in range(self.playersNum):
cp = self.state.curPlayer
if cp == p: # P owns the turn; controlls outcome
if cp == p: # P owns the turn; controlls outcome
best = inf
for c in self.childs:
if c.getStrongFor(p) < best:
best = c.getStrongFor(p)
strongs[p] = best
else:
scos = [(c.getStrongFor(p), c.getStrongFor(cp)) for c in self.childs]
scos = [(c.getStrongFor(p), c.getStrongFor(cp))
for c in self.childs]
scos.sort(key=lambda x: x[1])
betterHalf = scos[:max(3,int(len(scos)/3))]
betterHalf = scos[:max(3, int(len(scos)/3))]
myScores = [bh[0]**2 for bh in betterHalf]
strongs[p] = sqrt(myScores[0]*0.75 + sum(myScores)/(len(myScores)*4))
strongs[p] = sqrt(myScores[0]*0.75 +
sum(myScores)/(len(myScores)*4))
update = False
for s in range(self.playersNum):
if strongs[s] != self._strongs[s]:
@ -225,7 +237,7 @@ class Node():
break
self._strongs = strongs
if update:
if self.parent!=None:
if self.parent != None:
cascade = self.parent._pullStrong()
else:
cascade = 2
@ -235,7 +247,7 @@ class Node():
return 0
def forceStrong(self, depth=3):
if depth==0:
if depth == 0:
self.strongDecay()
else:
if len(self.childs):
@ -271,13 +283,13 @@ class Node():
def scoresAvaible(self):
for p in self._scores:
if p==None:
if p == None:
return False
return True
def strongScoresAvaible(self):
for p in self._strongs:
if p==None:
if p == None:
return False
return True
@ -290,10 +302,10 @@ class Node():
def _calcScore(self, player):
winner = self._getWinner()
if winner!=None:
if winner==player:
if winner != None:
if winner == player:
self._scores[player] = 0.0
elif winner==-1:
elif winner == -1:
self._scores[player] = 2/3
else:
self._scores[player] = 1.0
@ -301,7 +313,8 @@ class Node():
if self.universe.scoreProvider == 'naive':
self._scores[player] = self.state.getScoreFor(player)
elif self.universe.scoreProvider == 'neural':
self._scores[player] = self.state.getScoreNeural(self.universe.model, player)
self._scores[player] = self.state.getScoreNeural(
self.universe.model, player)
else:
raise Exception('Uknown Score-Provider')
@ -327,7 +340,7 @@ class Node():
return self.state.checkWin()
def getWinner(self):
if len(self.childs)==0:
if len(self.childs) == 0:
return -1
return self._getWinner()
@ -336,7 +349,7 @@ class Node():
self.universe.newOpen(self)
else:
for c in self.childs:
if c._cascadeMemory > 0.001*(dist-2) or random.random()<0.01:
if c._cascadeMemory > 0.001*(dist-2) or random.random() < 0.01:
c._activateEdge(dist=dist+1)
def __str__(self):
@ -350,27 +363,29 @@ class Node():
s.append("[ score: "+str(self.getScoreFor(0))+" ]")
return '\n'.join(s)
def choose(txt, options):
while True:
print('[*] '+txt)
for num,opt in enumerate(options):
for num, opt in enumerate(options):
print('['+str(num+1)+'] ' + str(opt))
inp = input('[> ')
try:
n = int(inp)
if n in range(1,len(options)+1):
if n in range(1, len(options)+1):
return options[n-1]
except:
pass
for opt in options:
if inp==str(opt):
if inp == str(opt):
return opt
if len(inp)==1:
if len(inp) == 1:
for opt in options:
if inp==str(opt)[0]:
if inp == str(opt)[0]:
return opt
print('[!] Invalid Input.')
class Worker():
def __init__(self, universe):
self.universe = universe
@ -383,7 +398,7 @@ class Worker():
def runLocal(self):
for i, node in enumerate(self.universe.iter()):
if node==None:
if node == None:
time.sleep(1)
if not self._alive:
return
@ -396,10 +411,11 @@ class Worker():
def revive(self):
self._alive = True
class Runtime():
def __init__(self, initState):
universe = QueueingUniverse()
self.head = Node(initState, universe = universe)
self.head = Node(initState, universe=universe)
_ = self.head.childs
universe.newOpen(self.head)
@ -422,15 +438,15 @@ class Runtime():
def turn(self, bot=None, calcDepth=3, bg=True):
print(str(self.head))
if bot==None:
if bot == None:
c = choose('Select action?', ['human', 'bot', 'undo', 'qlen'])
if c=='undo':
if c == 'undo':
self.head = self.head.parent
return
elif c=='qlen':
elif c == 'qlen':
print(self.head.universe.pq.qsize())
return
bot = c=='bot'
bot = c == 'bot'
if bot:
self.head.forceStrong(calcDepth)
opts = []
@ -450,25 +466,50 @@ class Runtime():
def game(self, bots=None, calcDepth=7, bg=True):
if bg:
self.spawnWorker()
if bots==None:
if bots == None:
bots = [None]*self.head.playersNum
while self.head.getWinner()==None:
while self.head.getWinner() == None:
self.turn(bots[self.head.curPlayer], calcDepth, bg=True)
print(['O','X','No one'][self.head.getWinner()] + ' won!')
print(['O', 'X', 'No one'][self.head.getWinner()] + ' won!')
if bg:
self.killWorker()
def saveModel(self, model, gen):
dat = model.state_dict()
with open(self.getModelFileName(), 'wb') as f:
pickle.dump((gen, dat), f)
def loadModelState(self, model):
with open(self.getModelFileName(), 'rb') as f:
gen, dat = pickle.load(f)
model.load_state_dict(dat)
model.eval()
return gen
def loadModel(self):
model = self.head.state.getModel()
gen = self.loadModelState(model)
return model, gen
def getModelFileName(self):
return 'brains/utt.vac'
def saveToMemoryBank(self, term):
return
with open('memoryBank/uttt/'+datetime.datetime.now().strftime('%Y-%m-%d_%H:%M:%S')+'_'+str(int(random.random()*99999))+'.vdm', 'wb') as f:
pickle.dump(term, f)
class NeuralRuntime(Runtime):
def __init__(self, initState):
super().__init__(initState)
model = self.head.state.getModel()
model.load_state_dict(torch.load('brains/uttt.pth'))
model.eval()
model, gen = self.loadModel()
self.head.universe.model = model
self.head.universe.scoreProvider = 'neural'
class Trainer(Runtime):
def __init__(self, initState):
super().__init__(initState)
@ -477,7 +518,7 @@ class Trainer(Runtime):
self.rootNode = self.head
self.terminal = None
def buildDatasetFromModel(self, model, depth=4, refining=True, fanOut=[5,5,5,5,4,4,4,4], uncertainSec=15, exacity=5):
def buildDatasetFromModel(self, model, depth=4, refining=True, fanOut=[5, 5, 5, 5, 4, 4, 4, 4], uncertainSec=15, exacity=5):
print('[*] Building Timeline')
term = self.linearPlay(model, calcDepth=depth, exacity=exacity)
if refining:
@ -496,42 +537,62 @@ class Trainer(Runtime):
head = self.rootNode
self.universe.model = model
self.spawnWorker()
while head.getWinner()==None:
while head.getWinner() == None:
if verbose:
print(head)
else:
print('.', end='', flush=True)
head.forceStrong(calcDepth)
opts = []
if len(head.childs)==0:
if len(head.childs) == 0:
break
for c in head.childs:
opts.append((c, c.getStrongFor(head.curPlayer)))
if firstNRandom:
firstNRandom-=1
firstNRandom -= 1
ind = int(random.random()*len(opts))
else:
opts.sort(key=lambda x: x[1])
if exacity >= 10:
ind = 0
else:
ind = int(pow(random.random(),exacity)*(len(opts)-1))
ind = int(pow(random.random(), exacity)*(len(opts)-1))
head = opts[ind][0]
self.killWorker()
if verbose:
print(head)
print(' => '+['O','X','No one'][head.getWinner()] + ' won!')
print(' => '+['O', 'X', 'No one'][head.getWinner()] + ' won!')
return head
def timelineIter(self, term):
head = term
def timelineIterSingle(self, term):
for i in self.timelineIter(self, [term]):
yield i
def timelineIter(self, terms, altChildPerNode=-1):
batch = len(terms)
heads = terms
while True:
yield head
if len(head.childs):
yield random.choice(head.childs)
if head.parent == None:
empty = True
for b in range(batch):
head = heads[b]
if head == None:
continue
empty = False
yield head
if len(head.childs):
if altChildPerNode == -1: # all
for child in head.childs:
yield child
else:
for j in range(min(altChildPerNode, int(len(head.childs)/2))):
yield random.choice(head.childs)
if head.parent == None:
head = None
else:
head = head.parent
heads[b] = head
if empty:
return
head = head.parent
def timelineExpandUncertain(self, term, secs):
self.rootNode.universe.clearPQ()
@ -544,20 +605,24 @@ class Trainer(Runtime):
self.killWorker()
print('')
def trainModel(self, model, lr=0.00005, cut=0.01, calcDepth=4, exacity=5, term=None):
def trainModel(self, model, lr=0.00005, cut=0.01, calcDepth=4, exacity=5, terms=None, batch=16):
loss_func = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr)
if term==None:
term = self.buildDatasetFromModel(model, depth=calcDepth, exacity=exacity)
if terms == None:
terms = []
for i in range(batch):
terms.append(self.buildDatasetFromModel(
model, depth=calcDepth, exacity=exacity))
print('[*] Conditioning Brain')
for r in range(64):
loss_sum = 0
lLoss = 0
zeroLen = 0
for i, node in enumerate(self.timelineIter(term)):
for i, node in enumerate(self.timelineIter(terms)):
for p in range(self.rootNode.playersNum):
inp = node.state.getTensor(player=p)
gol = torch.tensor([node.getStrongFor(p)], dtype=torch.float)
gol = torch.tensor(
[node.getStrongFor(p)], dtype=torch.float)
out = model(inp)
loss = loss_func(out, gol)
optimizer.zero_grad()
@ -565,10 +630,10 @@ class Trainer(Runtime):
optimizer.step()
loss_sum += loss.item()
if loss.item() == 0.0:
zeroLen+=1
zeroLen += 1
if zeroLen == 5:
break
#print(loss_sum/i)
# print(loss_sum/i)
if r > 16 and (loss_sum/i < cut or lLoss == loss_sum):
return loss_sum
lLoss = loss_sum
@ -576,35 +641,25 @@ class Trainer(Runtime):
def main(self, model=None, gens=1024, startGen=0):
newModel = False
if model==None:
if model == None:
print('[!] No brain found. Creating new one...')
newModel = True
model = self.rootNode.state.getModel()
self.universe.scoreProvider = ['neural','naive'][newModel]
self.universe.scoreProvider = ['neural', 'naive'][newModel]
model.train()
for gen in range(startGen, startGen+gens):
print('[#####] Gen '+str(gen)+' training:')
loss = self.trainModel(model, calcDepth=min(4,3+int(gen/16)), exacity=int(gen/3+1))
loss = self.trainModel(model, calcDepth=min(
4, 3+int(gen/16)), exacity=int(gen/3+1), batch=4)
print('[L] '+str(loss))
self.universe.scoreProvider = 'neural'
self.saveModel(model, gen)
def saveModel(self, model, gen):
dat = model.state_dict()
with open(self.getModelFileName(), 'wb') as f:
pickle.dump((gen, dat), f)
def loadModelState(self, model):
with open(self.getModelFileName(), 'rb') as f:
gen, dat = pickle.load(f)
model.load_state_dict(dat)
model.eval()
return gen
def loadModel(self):
model = self.rootNode.state.getModel()
gen = self.loadModelState(model)
return model, gen
def trainFromTerm(self, term):
model, gen = self.loadModel()
self.universe.scoreProvider = 'neural'
self.trainModel(model, calcDepth=4, exacity=10, term=term)
self.saveModel(model)
def train(self):
if os.path.exists(self.getModelFileName()):
@ -612,20 +667,3 @@ class Trainer(Runtime):
self.main(model, startGen=gen+1)
else:
self.main()
def getModelFileName(self):
return 'brains/utt.vac'
def trainFromTerm(self, term):
model = self.rootNode.state.getModel()
model.load_state_dict(torch.load('brains/uttt.vac'))
model.eval()
self.universe.scoreProvider = 'neural'
self.trainModel(model, calcDepth=4, exacity=10, term=term)
self.saveModel(model)
def saveToMemoryBank(self, term):
return
with open('memoryBank/uttt/'+datetime.datetime.now().strftime('%Y-%m-%d_%H:%M:%S')+'_'+str(int(random.random()*99999))+'.vdm', 'wb') as f:
pickle.dump(term, f)