Compare commits
No commits in common. "cac86ef6abe216b49b1ded903bcc6b142fb03b5f" and "6967243ae2f6cf48b5baf1837f948beb02aba707" have entirely different histories.
cac86ef6ab
...
6967243ae2
BIN
brains/utt.vac
BIN
brains/utt.vac
Binary file not shown.
BIN
brains/uttt.pth.bak
Normal file
BIN
brains/uttt.pth.bak
Normal file
Binary file not shown.
136
vacuumDecay.py
136
vacuumDecay.py
@ -1,7 +1,3 @@
|
|||||||
if __name__ == '__main__':
|
|
||||||
print('[!] VacuumDecay should not be started directly')
|
|
||||||
exit()
|
|
||||||
|
|
||||||
import os
|
import os
|
||||||
import io
|
import io
|
||||||
import time
|
import time
|
||||||
@ -21,7 +17,6 @@ import random
|
|||||||
import datetime
|
import datetime
|
||||||
import pickle
|
import pickle
|
||||||
|
|
||||||
|
|
||||||
class Action():
|
class Action():
|
||||||
# Should hold the data representing an action
|
# Should hold the data representing an action
|
||||||
# Actions are applied to a State in State.mutate
|
# Actions are applied to a State in State.mutate
|
||||||
@ -42,7 +37,6 @@ class Action():
|
|||||||
# should start with < and end with >
|
# should start with < and end with >
|
||||||
return "<P"+str(self.player)+"-"+str(self.data)+">"
|
return "<P"+str(self.player)+"-"+str(self.data)+">"
|
||||||
|
|
||||||
|
|
||||||
class State(ABC):
|
class State(ABC):
|
||||||
# Hold a representation of the current game-state
|
# Hold a representation of the current game-state
|
||||||
# Allows retriving avaible actions (getAvaibleActions) and applying them (mutate)
|
# Allows retriving avaible actions (getAvaibleActions) and applying them (mutate)
|
||||||
@ -116,7 +110,6 @@ class State(ABC):
|
|||||||
def getScoreNeural(self, model, player=None, phase='default'):
|
def getScoreNeural(self, model, player=None, phase='default'):
|
||||||
return model(self.getTensor(player=player, phase=phase)).item()
|
return model(self.getTensor(player=player, phase=phase)).item()
|
||||||
|
|
||||||
|
|
||||||
class Universe():
|
class Universe():
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.scoreProvider = 'naive'
|
self.scoreProvider = 'naive'
|
||||||
@ -136,13 +129,11 @@ class Universe():
|
|||||||
def activateEdge(self, head):
|
def activateEdge(self, head):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
@dataclass(order=True)
|
@dataclass(order=True)
|
||||||
class PQItem:
|
class PQItem:
|
||||||
priority: int
|
priority: int
|
||||||
data: Any=field(compare=False)
|
data: Any=field(compare=False)
|
||||||
|
|
||||||
|
|
||||||
class QueueingUniverse(Universe):
|
class QueueingUniverse(Universe):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -202,8 +193,7 @@ class Node():
|
|||||||
self._childs = []
|
self._childs = []
|
||||||
actions = self.state.getAvaibleActions()
|
actions = self.state.getAvaibleActions()
|
||||||
for action in actions:
|
for action in actions:
|
||||||
newNode = Node(self.state.mutate(action),
|
newNode = Node(self.state.mutate(action), self.universe, self, action)
|
||||||
self.universe, self, action)
|
|
||||||
self._childs.append(self.universe.merge(newNode))
|
self._childs.append(self.universe.merge(newNode))
|
||||||
|
|
||||||
def getStrongFor(self, player):
|
def getStrongFor(self, player):
|
||||||
@ -223,13 +213,11 @@ class Node():
|
|||||||
best = c.getStrongFor(p)
|
best = c.getStrongFor(p)
|
||||||
strongs[p] = best
|
strongs[p] = best
|
||||||
else:
|
else:
|
||||||
scos = [(c.getStrongFor(p), c.getStrongFor(cp))
|
scos = [(c.getStrongFor(p), c.getStrongFor(cp)) for c in self.childs]
|
||||||
for c in self.childs]
|
|
||||||
scos.sort(key=lambda x: x[1])
|
scos.sort(key=lambda x: x[1])
|
||||||
betterHalf = scos[:max(3,int(len(scos)/3))]
|
betterHalf = scos[:max(3,int(len(scos)/3))]
|
||||||
myScores = [bh[0]**2 for bh in betterHalf]
|
myScores = [bh[0]**2 for bh in betterHalf]
|
||||||
strongs[p] = sqrt(myScores[0]*0.75 +
|
strongs[p] = sqrt(myScores[0]*0.75 + sum(myScores)/(len(myScores)*4))
|
||||||
sum(myScores)/(len(myScores)*4))
|
|
||||||
update = False
|
update = False
|
||||||
for s in range(self.playersNum):
|
for s in range(self.playersNum):
|
||||||
if strongs[s] != self._strongs[s]:
|
if strongs[s] != self._strongs[s]:
|
||||||
@ -313,8 +301,7 @@ class Node():
|
|||||||
if self.universe.scoreProvider == 'naive':
|
if self.universe.scoreProvider == 'naive':
|
||||||
self._scores[player] = self.state.getScoreFor(player)
|
self._scores[player] = self.state.getScoreFor(player)
|
||||||
elif self.universe.scoreProvider == 'neural':
|
elif self.universe.scoreProvider == 'neural':
|
||||||
self._scores[player] = self.state.getScoreNeural(
|
self._scores[player] = self.state.getScoreNeural(self.universe.model, player)
|
||||||
self.universe.model, player)
|
|
||||||
else:
|
else:
|
||||||
raise Exception('Uknown Score-Provider')
|
raise Exception('Uknown Score-Provider')
|
||||||
|
|
||||||
@ -363,7 +350,6 @@ class Node():
|
|||||||
s.append("[ score: "+str(self.getScoreFor(0))+" ]")
|
s.append("[ score: "+str(self.getScoreFor(0))+" ]")
|
||||||
return '\n'.join(s)
|
return '\n'.join(s)
|
||||||
|
|
||||||
|
|
||||||
def choose(txt, options):
|
def choose(txt, options):
|
||||||
while True:
|
while True:
|
||||||
print('[*] '+txt)
|
print('[*] '+txt)
|
||||||
@ -385,7 +371,6 @@ def choose(txt, options):
|
|||||||
return opt
|
return opt
|
||||||
print('[!] Invalid Input.')
|
print('[!] Invalid Input.')
|
||||||
|
|
||||||
|
|
||||||
class Worker():
|
class Worker():
|
||||||
def __init__(self, universe):
|
def __init__(self, universe):
|
||||||
self.universe = universe
|
self.universe = universe
|
||||||
@ -411,7 +396,6 @@ class Worker():
|
|||||||
def revive(self):
|
def revive(self):
|
||||||
self._alive = True
|
self._alive = True
|
||||||
|
|
||||||
|
|
||||||
class Runtime():
|
class Runtime():
|
||||||
def __init__(self, initState):
|
def __init__(self, initState):
|
||||||
universe = QueueingUniverse()
|
universe = QueueingUniverse()
|
||||||
@ -474,42 +458,17 @@ class Runtime():
|
|||||||
if bg:
|
if bg:
|
||||||
self.killWorker()
|
self.killWorker()
|
||||||
|
|
||||||
def saveModel(self, model, gen):
|
|
||||||
dat = model.state_dict()
|
|
||||||
with open(self.getModelFileName(), 'wb') as f:
|
|
||||||
pickle.dump((gen, dat), f)
|
|
||||||
|
|
||||||
def loadModelState(self, model):
|
|
||||||
with open(self.getModelFileName(), 'rb') as f:
|
|
||||||
gen, dat = pickle.load(f)
|
|
||||||
model.load_state_dict(dat)
|
|
||||||
model.eval()
|
|
||||||
return gen
|
|
||||||
|
|
||||||
def loadModel(self):
|
|
||||||
model = self.head.state.getModel()
|
|
||||||
gen = self.loadModelState(model)
|
|
||||||
return model, gen
|
|
||||||
|
|
||||||
def getModelFileName(self):
|
|
||||||
return 'brains/utt.vac'
|
|
||||||
|
|
||||||
def saveToMemoryBank(self, term):
|
|
||||||
return
|
|
||||||
with open('memoryBank/uttt/'+datetime.datetime.now().strftime('%Y-%m-%d_%H:%M:%S')+'_'+str(int(random.random()*99999))+'.vdm', 'wb') as f:
|
|
||||||
pickle.dump(term, f)
|
|
||||||
|
|
||||||
|
|
||||||
class NeuralRuntime(Runtime):
|
class NeuralRuntime(Runtime):
|
||||||
def __init__(self, initState):
|
def __init__(self, initState):
|
||||||
super().__init__(initState)
|
super().__init__(initState)
|
||||||
|
|
||||||
model, gen = self.loadModel()
|
model = self.head.state.getModel()
|
||||||
|
model.load_state_dict(torch.load('brains/uttt.pth'))
|
||||||
|
model.eval()
|
||||||
|
|
||||||
self.head.universe.model = model
|
self.head.universe.model = model
|
||||||
self.head.universe.scoreProvider = 'neural'
|
self.head.universe.scoreProvider = 'neural'
|
||||||
|
|
||||||
|
|
||||||
class Trainer(Runtime):
|
class Trainer(Runtime):
|
||||||
def __init__(self, initState):
|
def __init__(self, initState):
|
||||||
super().__init__(initState)
|
super().__init__(initState)
|
||||||
@ -564,35 +523,15 @@ class Trainer(Runtime):
|
|||||||
print(' => '+['O','X','No one'][head.getWinner()] + ' won!')
|
print(' => '+['O','X','No one'][head.getWinner()] + ' won!')
|
||||||
return head
|
return head
|
||||||
|
|
||||||
def timelineIterSingle(self, term):
|
def timelineIter(self, term):
|
||||||
for i in self.timelineIter(self, [term]):
|
head = term
|
||||||
yield i
|
|
||||||
|
|
||||||
def timelineIter(self, terms, altChildPerNode=-1):
|
|
||||||
batch = len(terms)
|
|
||||||
heads = terms
|
|
||||||
while True:
|
while True:
|
||||||
empty = True
|
|
||||||
for b in range(batch):
|
|
||||||
head = heads[b]
|
|
||||||
if head == None:
|
|
||||||
continue
|
|
||||||
empty = False
|
|
||||||
yield head
|
yield head
|
||||||
if len(head.childs):
|
if len(head.childs):
|
||||||
if altChildPerNode == -1: # all
|
|
||||||
for child in head.childs:
|
|
||||||
yield child
|
|
||||||
else:
|
|
||||||
for j in range(min(altChildPerNode, int(len(head.childs)/2))):
|
|
||||||
yield random.choice(head.childs)
|
yield random.choice(head.childs)
|
||||||
if head.parent == None:
|
if head.parent == None:
|
||||||
head = None
|
|
||||||
else:
|
|
||||||
head = head.parent
|
|
||||||
heads[b] = head
|
|
||||||
if empty:
|
|
||||||
return
|
return
|
||||||
|
head = head.parent
|
||||||
|
|
||||||
def timelineExpandUncertain(self, term, secs):
|
def timelineExpandUncertain(self, term, secs):
|
||||||
self.rootNode.universe.clearPQ()
|
self.rootNode.universe.clearPQ()
|
||||||
@ -605,24 +544,20 @@ class Trainer(Runtime):
|
|||||||
self.killWorker()
|
self.killWorker()
|
||||||
print('')
|
print('')
|
||||||
|
|
||||||
def trainModel(self, model, lr=0.00005, cut=0.01, calcDepth=4, exacity=5, terms=None, batch=16):
|
def trainModel(self, model, lr=0.00005, cut=0.01, calcDepth=4, exacity=5, term=None):
|
||||||
loss_func = nn.MSELoss()
|
loss_func = nn.MSELoss()
|
||||||
optimizer = optim.Adam(model.parameters(), lr)
|
optimizer = optim.Adam(model.parameters(), lr)
|
||||||
if terms == None:
|
if term==None:
|
||||||
terms = []
|
term = self.buildDatasetFromModel(model, depth=calcDepth, exacity=exacity)
|
||||||
for i in range(batch):
|
|
||||||
terms.append(self.buildDatasetFromModel(
|
|
||||||
model, depth=calcDepth, exacity=exacity))
|
|
||||||
print('[*] Conditioning Brain')
|
print('[*] Conditioning Brain')
|
||||||
for r in range(64):
|
for r in range(64):
|
||||||
loss_sum = 0
|
loss_sum = 0
|
||||||
lLoss = 0
|
lLoss = 0
|
||||||
zeroLen = 0
|
zeroLen = 0
|
||||||
for i, node in enumerate(self.timelineIter(terms)):
|
for i, node in enumerate(self.timelineIter(term)):
|
||||||
for p in range(self.rootNode.playersNum):
|
for p in range(self.rootNode.playersNum):
|
||||||
inp = node.state.getTensor(player=p)
|
inp = node.state.getTensor(player=p)
|
||||||
gol = torch.tensor(
|
gol = torch.tensor([node.getStrongFor(p)], dtype=torch.float)
|
||||||
[node.getStrongFor(p)], dtype=torch.float)
|
|
||||||
out = model(inp)
|
out = model(inp)
|
||||||
loss = loss_func(out, gol)
|
loss = loss_func(out, gol)
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
@ -649,17 +584,27 @@ class Trainer(Runtime):
|
|||||||
model.train()
|
model.train()
|
||||||
for gen in range(startGen, startGen+gens):
|
for gen in range(startGen, startGen+gens):
|
||||||
print('[#####] Gen '+str(gen)+' training:')
|
print('[#####] Gen '+str(gen)+' training:')
|
||||||
loss = self.trainModel(model, calcDepth=min(
|
loss = self.trainModel(model, calcDepth=min(4,3+int(gen/16)), exacity=int(gen/3+1))
|
||||||
4, 3+int(gen/16)), exacity=int(gen/3+1), batch=4)
|
|
||||||
print('[L] '+str(loss))
|
print('[L] '+str(loss))
|
||||||
self.universe.scoreProvider = 'neural'
|
self.universe.scoreProvider = 'neural'
|
||||||
self.saveModel(model, gen)
|
self.saveModel(model, gen)
|
||||||
|
|
||||||
def trainFromTerm(self, term):
|
def saveModel(self, model, gen):
|
||||||
model, gen = self.loadModel()
|
dat = model.state_dict()
|
||||||
self.universe.scoreProvider = 'neural'
|
with open(self.getModelFileName(), 'wb') as f:
|
||||||
self.trainModel(model, calcDepth=4, exacity=10, term=term)
|
pickle.dump((gen, dat), f)
|
||||||
self.saveModel(model)
|
|
||||||
|
def loadModelState(self, model):
|
||||||
|
with open(self.getModelFileName(), 'rb') as f:
|
||||||
|
gen, dat = pickle.load(f)
|
||||||
|
model.load_state_dict(dat)
|
||||||
|
model.eval()
|
||||||
|
return gen
|
||||||
|
|
||||||
|
def loadModel(self):
|
||||||
|
model = self.rootNode.state.getModel()
|
||||||
|
gen = self.loadModelState(model)
|
||||||
|
return model, gen
|
||||||
|
|
||||||
def train(self):
|
def train(self):
|
||||||
if os.path.exists(self.getModelFileName()):
|
if os.path.exists(self.getModelFileName()):
|
||||||
@ -667,3 +612,20 @@ class Trainer(Runtime):
|
|||||||
self.main(model, startGen=gen+1)
|
self.main(model, startGen=gen+1)
|
||||||
else:
|
else:
|
||||||
self.main()
|
self.main()
|
||||||
|
|
||||||
|
def getModelFileName(self):
|
||||||
|
return 'brains/utt.vac'
|
||||||
|
|
||||||
|
def trainFromTerm(self, term):
|
||||||
|
model = self.rootNode.state.getModel()
|
||||||
|
model.load_state_dict(torch.load('brains/uttt.vac'))
|
||||||
|
model.eval()
|
||||||
|
self.universe.scoreProvider = 'neural'
|
||||||
|
self.trainModel(model, calcDepth=4, exacity=10, term=term)
|
||||||
|
self.saveModel(model)
|
||||||
|
|
||||||
|
def saveToMemoryBank(self, term):
|
||||||
|
return
|
||||||
|
with open('memoryBank/uttt/'+datetime.datetime.now().strftime('%Y-%m-%d_%H:%M:%S')+'_'+str(int(random.random()*99999))+'.vdm', 'wb') as f:
|
||||||
|
pickle.dump(term, f)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user