add separate eval model class that also initializes the pre-trained policy for early denoising steps

This commit is contained in:
allenzren 2025-01-03 17:22:27 -05:00 committed by Allen Z. Ren
parent e7f73dffc1
commit ace2bbdab9
4 changed files with 138 additions and 2 deletions

View File

@ -138,7 +138,7 @@ See [here](cfg/finetuning.md) for details of the experiments in the paper.
* Videos of trials in Robomimic tasks can be recorded by specifying `env.save_video=True`, `train.render.freq=<iterations>`, and `train.render.num=<num_video>` in fine-tuning configs.
## Usage - Evaluation
Pre-trained or fine-tuned policies can be evaluated without running the fine-tuning script now. Some example configs are provided under `cfg/{gym/robomimic/furniture}/eval}` including ones below. Set `base_policy_path` to override the default checkpoint.
Pre-trained or fine-tuned policies can be evaluated without running the fine-tuning script now. Some example configs are provided under `cfg/{gym/robomimic/furniture}/eval}` including ones below. `ft_denoising_steps` needs to match fine-tuning config. Set `base_policy_path` to override the default checkpoint.
```console
python script/run.py --config-name=eval_diffusion_mlp \
--config-dir=cfg/gym/eval/hopper-v2

View File

@ -128,7 +128,7 @@ class TrainAgent:
data = {
"itr": self.itr,
"model": self.model.state_dict(),
}
} # right now `model` includes weights for `network`, `actor`, `actor_ft`. Weights for `network` is redundant, and we can use `actor` weights as the base policy (earlier denoising steps) and `actor_ft` weights as the fine-tuned policy (later denoising steps) during evaluation.
savepath = os.path.join(self.checkpoint_dir, f"state_{self.itr}.pt")
torch.save(data, savepath)
log.info(f"Saved model to {savepath}")

View File

@ -289,6 +289,7 @@ class DiffusionModel(nn.Module):
t=t_b,
cond=cond,
index=index_b,
deterministic=deterministic,
)
std = torch.exp(0.5 * logvar)

View File

@ -0,0 +1,135 @@
"""
For evaluating RL fine-tuned diffusion policy
Account for frozen base policy for early denoising steps and fine-tuned policy for later denoising steps
"""
import copy
import logging
import torch
log = logging.getLogger(__name__)
from model.diffusion.diffusion import DiffusionModel
from model.diffusion.sampling import extract
class DiffusionEvalFT(DiffusionModel):
def __init__(
self,
use_ddim,
ft_denoising_steps,
network_path,
**kwargs,
):
# do not let base class load model
super().__init__(use_ddim=use_ddim, network_path=None, **kwargs)
self.ft_denoising_steps = ft_denoising_steps
checkpoint = torch.load(
network_path, map_location=self.device, weights_only=True
) # 'network.mlp_mean...', 'actor.mlp_mean...', 'actor_ft.mlp_mean...'
# Set up base model --- techncally not needed if all denoising steps are fine-tuned
self.actor = self.network
base_weights = {
key.split("actor.")[1]: checkpoint["model"][key]
for key in checkpoint["model"]
if "actor." in key
}
self.actor.load_state_dict(base_weights, strict=True)
logging.info("Loaded base policy weights from %s", network_path)
# Always set up fine-tuned model
self.actor_ft = copy.deepcopy(self.network)
ft_weights = {
key.split("actor_ft.")[1]: checkpoint["model"][key]
for key in checkpoint["model"]
if "actor_ft." in key
}
self.actor_ft.load_state_dict(ft_weights, strict=True)
logging.info("Loaded fine-tuned policy weights from %s", network_path)
# override
def p_mean_var(
self,
x,
t,
cond,
index=None,
deterministic=False,
):
noise = self.actor(x, t, cond=cond)
if self.use_ddim:
ft_indices = torch.where(
index >= (self.ddim_steps - self.ft_denoising_steps)
)[0]
else:
ft_indices = torch.where(t < self.ft_denoising_steps)[0]
# overwrite noise for fine-tuning steps
if len(ft_indices) > 0:
cond_ft = {key: cond[key][ft_indices] for key in cond}
noise_ft = self.actor_ft(x[ft_indices], t[ft_indices], cond=cond_ft)
noise[ft_indices] = noise_ft
# Predict x_0
if self.predict_epsilon:
if self.use_ddim:
"""
x₀ = (xₜ - (1-αₜ) ε )/ αₜ
"""
alpha = extract(self.ddim_alphas, index, x.shape)
alpha_prev = extract(self.ddim_alphas_prev, index, x.shape)
sqrt_one_minus_alpha = extract(
self.ddim_sqrt_one_minus_alphas, index, x.shape
)
x_recon = (x - sqrt_one_minus_alpha * noise) / (alpha**0.5)
else:
"""
x₀ = 1\α̅ xₜ - 1\α̅-1 ε
"""
x_recon = (
extract(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
- extract(self.sqrt_recipm1_alphas_cumprod, t, x.shape) * noise
)
else: # directly predicting x₀
x_recon = noise
if self.denoised_clip_value is not None:
x_recon.clamp_(-self.denoised_clip_value, self.denoised_clip_value)
if self.use_ddim:
# re-calculate noise based on clamped x_recon - default to false in HF, but let's use it here
noise = (x - alpha ** (0.5) * x_recon) / sqrt_one_minus_alpha
# Clip epsilon for numerical stability in policy gradient - not sure if this is helpful yet, but the value can be huge sometimes. This has no effect if DDPM is used
if self.use_ddim and self.eps_clip_value is not None:
noise.clamp_(-self.eps_clip_value, self.eps_clip_value)
# Get mu
if self.use_ddim:
"""
μ = αₜ x₀ + (1-αₜ - σₜ²) ε
"""
if deterministic:
etas = torch.zeros((x.shape[0], 1, 1)).to(x.device)
else:
etas = self.eta(cond).unsqueeze(1) # B x 1 x (Da or 1)
sigma = (
etas
* ((1 - alpha_prev) / (1 - alpha) * (1 - alpha / alpha_prev)) ** 0.5
).clamp_(min=1e-10)
dir_xt_coef = (1.0 - alpha_prev - sigma**2).clamp_(min=0).sqrt()
mu = (alpha_prev**0.5) * x_recon + dir_xt_coef * noise
var = sigma**2
logvar = torch.log(var)
else:
"""
μₜ = β̃ α̅/(1-α̅)x₀ + αₜ (1-α̅)/(1-α̅)xₜ
"""
mu = (
extract(self.ddpm_mu_coef1, t, x.shape) * x_recon
+ extract(self.ddpm_mu_coef2, t, x.shape) * x
)
logvar = extract(self.ddpm_logvar_clipped, t, x.shape)
return mu, logvar