fancy_gym/test/test_replanning_sequencing.py

365 lines
16 KiB
Python
Raw Permalink Normal View History

2022-10-21 16:16:49 +02:00
from itertools import chain
2022-10-24 09:24:12 +02:00
from types import FunctionType
2022-10-21 16:16:49 +02:00
from typing import Tuple, Type, Union, Optional
import gymnasium as gym
2022-10-21 16:16:49 +02:00
import numpy as np
import pytest
from gymnasium import register, make
from gymnasium.core import ActType, ObsType
from gymnasium import spaces
2022-10-21 16:16:49 +02:00
import fancy_gym
from fancy_gym.black_box.raw_interface_wrapper import RawInterfaceWrapper
from fancy_gym.utils.wrappers import TimeAwareObservation
from fancy_gym.utils.make_env_helpers import ensure_finite_time
2022-10-21 16:16:49 +02:00
SEED = 1
2023-08-14 16:47:05 +02:00
ENV_IDS = ['fancy/Reacher5d-v0', 'dm_control/ball_in_cup-catch-v0', 'metaworld/reach-v2', 'Reacher-v2']
2022-10-21 16:16:49 +02:00
WRAPPERS = [fancy_gym.envs.mujoco.reacher.MPWrapper, fancy_gym.dmc.suite.ball_in_cup.MPWrapper,
fancy_gym.meta.goal_object_change_mp_wrapper.MPWrapper, fancy_gym.open_ai.mujoco.reacher_v2.MPWrapper]
2023-08-14 16:47:05 +02:00
ALL_MP_ENVS = fancy_gym.ALL_MOVEMENT_PRIMITIVE_ENVIRONMENTS['all']
2022-10-21 16:16:49 +02:00
2023-06-18 15:52:17 +02:00
MAX_STEPS_FALLBACK = 50
2022-10-21 16:16:49 +02:00
class ToyEnv(gym.Env):
observation_space = gym.spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float64)
action_space = gym.spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float64)
dt = 0.02
def reset(self, *, seed: Optional[int] = None, return_info: bool = False,
options: Optional[dict] = None) -> Union[ObsType, Tuple[ObsType, dict]]:
obs, options = np.array([-1]), {}
return obs, options
2022-10-21 16:16:49 +02:00
def step(self, action: ActType) -> Tuple[ObsType, float, bool, dict]:
obs, reward, terminated, truncated, info = np.array([-1]), 1, False, False, {}
return obs, reward, terminated, truncated, info
2022-10-21 16:16:49 +02:00
def render(self):
2022-10-21 16:16:49 +02:00
pass
class ToyWrapper(RawInterfaceWrapper):
@property
def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
return np.ones(self.action_space.shape)
@property
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
return np.zeros(self.action_space.shape)
@pytest.fixture(scope="session", autouse=True)
def setup():
register(
id=f'toy-v0',
entry_point='test.test_black_box:ToyEnv',
max_episode_steps=50,
)
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
@pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS))
@pytest.mark.parametrize('add_time_aware_wrapper_before', [True, False])
def test_learn_sub_trajectories(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWrapper]],
add_time_aware_wrapper_before: bool):
env_id, wrapper_class = env_wrap
env_step = TimeAwareObservation(ensure_finite_time(make(env_id, SEED), MAX_STEPS_FALLBACK))
2022-10-21 16:16:49 +02:00
wrappers = [wrapper_class]
# has time aware wrapper
if add_time_aware_wrapper_before:
wrappers += [TimeAwareObservation]
env = fancy_gym.make_bb(env_id, [wrapper_class], {'learn_sub_trajectories': True, 'verbose': 2},
{'trajectory_generator_type': mp_type},
{'controller_type': 'motor'},
{'phase_generator_type': 'exp'},
{'basis_generator_type': 'rbf'}, fallback_max_steps=MAX_STEPS_FALLBACK)
env.reset(seed=SEED)
2022-10-21 16:16:49 +02:00
assert env.learn_sub_trajectories
assert env.spec.max_episode_steps
assert env_step.spec.max_episode_steps
2022-10-21 16:16:49 +02:00
assert env.traj_gen.learn_tau
# This also verifies we are not adding the TimeAwareObservationWrapper twice
assert spaces.flatten_space(env_step.observation_space) == spaces.flatten_space(env.observation_space)
2022-10-21 16:16:49 +02:00
done = True
2022-10-21 16:16:49 +02:00
for i in range(25):
if done:
env.reset(seed=SEED)
2023-08-14 16:47:05 +02:00
2022-10-21 16:16:49 +02:00
action = env.action_space.sample()
_obs, _reward, terminated, truncated, info = env.step(action)
done = terminated or truncated
2022-10-21 16:16:49 +02:00
length = info['trajectory_length']
if not done:
2022-10-21 16:16:49 +02:00
assert length == np.round(action[0] / env.dt)
assert length == np.round(env.traj_gen.tau.numpy() / env.dt)
else:
# When done trajectory could be shorter due to termination.
assert length <= np.round(action[0] / env.dt)
assert length <= np.round(env.traj_gen.tau.numpy() / env.dt)
2022-11-14 17:39:46 +01:00
@pytest.mark.parametrize('mp_type', ['promp', 'dmp', 'prodmp'])
2022-10-21 16:16:49 +02:00
@pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS))
@pytest.mark.parametrize('add_time_aware_wrapper_before', [True, False])
@pytest.mark.parametrize('replanning_time', [10, 100, 1000])
def test_replanning_time(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWrapper]],
add_time_aware_wrapper_before: bool, replanning_time: int):
env_id, wrapper_class = env_wrap
env_step = TimeAwareObservation(ensure_finite_time(make(env_id, SEED), MAX_STEPS_FALLBACK))
2022-10-21 16:16:49 +02:00
wrappers = [wrapper_class]
# has time aware wrapper
if add_time_aware_wrapper_before:
wrappers += [TimeAwareObservation]
def replanning_schedule(c_pos, c_vel, obs, c_action, t): return t % replanning_time == 0
2022-10-21 16:16:49 +02:00
2022-11-14 17:39:46 +01:00
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
phase_generator_type = 'exp' if 'dmp' in mp_type else 'linear'
2022-10-21 16:16:49 +02:00
env = fancy_gym.make_bb(env_id, [wrapper_class], {'replanning_schedule': replanning_schedule, 'verbose': 2},
{'trajectory_generator_type': mp_type},
{'controller_type': 'motor'},
2022-11-14 17:39:46 +01:00
{'phase_generator_type': phase_generator_type},
{'basis_generator_type': basis_generator_type}, fallback_max_steps=MAX_STEPS_FALLBACK)
env.reset(seed=SEED)
2022-10-21 16:16:49 +02:00
assert env.do_replanning
assert env.spec.max_episode_steps
assert env_step.spec.max_episode_steps
2022-10-24 09:24:12 +02:00
assert callable(env.replanning_schedule)
2022-10-21 16:16:49 +02:00
# This also verifies we are not adding the TimeAwareObservationWrapper twice
assert spaces.flatten_space(env_step.observation_space) == spaces.flatten_space(env.observation_space)
2022-10-21 16:16:49 +02:00
env.reset(seed=SEED)
2022-10-21 16:16:49 +02:00
episode_steps = env_step.spec.max_episode_steps // replanning_time
# Make 3 episodes, total steps depend on the replanning steps
for i in range(3 * episode_steps):
action = env.action_space.sample()
_obs, _reward, terminated, truncated, info = env.step(action)
done = terminated or truncated
2022-10-21 16:16:49 +02:00
length = info['trajectory_length']
if done:
2022-10-21 16:16:49 +02:00
# Check if number of steps until termination match the replanning interval
print(done, (i + 1), episode_steps)
2022-10-21 16:16:49 +02:00
assert (i + 1) % episode_steps == 0
env.reset(seed=SEED)
2022-10-21 16:16:49 +02:00
assert replanning_schedule(None, None, None, None, length)
2022-11-14 17:39:46 +01:00
2022-11-14 17:39:46 +01:00
@pytest.mark.parametrize('mp_type', ['promp', 'prodmp'])
@pytest.mark.parametrize('max_planning_times', [1, 2, 3, 4])
@pytest.mark.parametrize('sub_segment_steps', [5, 10])
def test_max_planning_times(mp_type: str, max_planning_times: int, sub_segment_steps: int):
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
phase_generator_type = 'exp' if mp_type == 'prodmp' else 'linear'
env = fancy_gym.make_bb('toy-v0', [ToyWrapper],
{'max_planning_times': max_planning_times,
'replanning_schedule': lambda pos, vel, obs, action, t: t % sub_segment_steps == 0,
'verbose': 2},
{'trajectory_generator_type': mp_type,
},
{'controller_type': 'motor'},
{'phase_generator_type': phase_generator_type,
'learn_tau': False,
'learn_delay': False
},
{'basis_generator_type': basis_generator_type,
},
fallback_max_steps=MAX_STEPS_FALLBACK)
_ = env.reset(seed=SEED)
done = False
2022-11-14 17:39:46 +01:00
planning_times = 0
while not done:
action = env.action_space.sample()
_obs, _reward, terminated, truncated, _info = env.step(action)
done = terminated or truncated
2022-11-14 17:39:46 +01:00
planning_times += 1
assert planning_times == max_planning_times
2022-11-14 17:39:46 +01:00
@pytest.mark.parametrize('mp_type', ['promp', 'prodmp'])
@pytest.mark.parametrize('max_planning_times', [1, 2, 3, 4])
@pytest.mark.parametrize('sub_segment_steps', [5, 10])
@pytest.mark.parametrize('tau', [0.5, 1.0, 1.5, 2.0])
def test_replanning_with_learn_tau(mp_type: str, max_planning_times: int, sub_segment_steps: int, tau: float):
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
phase_generator_type = 'exp' if mp_type == 'prodmp' else 'linear'
env = fancy_gym.make_bb('toy-v0', [ToyWrapper],
{'replanning_schedule': lambda pos, vel, obs, action, t: t % sub_segment_steps == 0,
'max_planning_times': max_planning_times,
'verbose': 2},
{'trajectory_generator_type': mp_type,
},
{'controller_type': 'motor'},
{'phase_generator_type': phase_generator_type,
'learn_tau': True,
'learn_delay': False
},
{'basis_generator_type': basis_generator_type,
},
fallback_max_steps=MAX_STEPS_FALLBACK)
_ = env.reset(seed=SEED)
done = False
2022-11-14 17:39:46 +01:00
planning_times = 0
while not done:
2022-11-14 17:39:46 +01:00
action = env.action_space.sample()
action[0] = tau
_obs, _reward, terminated, truncated, _info = env.step(action)
done = terminated or truncated
2022-11-14 17:39:46 +01:00
planning_times += 1
assert planning_times == max_planning_times
2022-11-14 17:39:46 +01:00
@pytest.mark.parametrize('mp_type', ['promp', 'prodmp'])
@pytest.mark.parametrize('max_planning_times', [1, 2, 3, 4])
@pytest.mark.parametrize('sub_segment_steps', [5, 10])
@pytest.mark.parametrize('delay', [0.1, 0.25, 0.5, 0.75])
def test_replanning_with_learn_delay(mp_type: str, max_planning_times: int, sub_segment_steps: int, delay: float):
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
phase_generator_type = 'exp' if mp_type == 'prodmp' else 'linear'
env = fancy_gym.make_bb('toy-v0', [ToyWrapper],
{'replanning_schedule': lambda pos, vel, obs, action, t: t % sub_segment_steps == 0,
'max_planning_times': max_planning_times,
'verbose': 2},
{'trajectory_generator_type': mp_type,
},
{'controller_type': 'motor'},
{'phase_generator_type': phase_generator_type,
'learn_tau': False,
'learn_delay': True
},
{'basis_generator_type': basis_generator_type,
},
fallback_max_steps=MAX_STEPS_FALLBACK)
_ = env.reset(seed=SEED)
done = False
2022-11-14 17:39:46 +01:00
planning_times = 0
while not done:
2022-11-14 17:39:46 +01:00
action = env.action_space.sample()
action[0] = delay
_obs, _reward, terminated, truncated, info = env.step(action)
done = terminated or truncated
2022-11-14 17:39:46 +01:00
delay_time_steps = int(np.round(delay / env.dt))
pos = info['positions'].flatten()
vel = info['velocities'].flatten()
# Check beginning is all same (only true for linear basis)
if planning_times == 0:
assert np.all(pos[:max(1, delay_time_steps - 1)] == pos[0])
assert np.all(vel[:max(1, delay_time_steps - 2)] == vel[0])
# only valid when delay < sub_segment_steps
elif planning_times > 0 and delay_time_steps < sub_segment_steps:
assert np.all(pos[1:max(1, delay_time_steps - 1)] != pos[0])
assert np.all(vel[1:max(1, delay_time_steps - 2)] != vel[0])
# Check active trajectory section is different to beginning values
assert np.all(pos[max(1, delay_time_steps):] != pos[0])
assert np.all(vel[max(1, delay_time_steps)] != vel[0])
planning_times += 1
assert planning_times == max_planning_times
2022-11-14 17:39:46 +01:00
@pytest.mark.parametrize('mp_type', ['promp', 'prodmp'])
@pytest.mark.parametrize('max_planning_times', [1, 2, 3])
@pytest.mark.parametrize('sub_segment_steps', [5, 10, 15])
@pytest.mark.parametrize('delay', [0, 0.25, 0.5, 0.75])
@pytest.mark.parametrize('tau', [0.5, 0.75, 1.0])
def test_replanning_with_learn_delay_and_tau(mp_type: str, max_planning_times: int, sub_segment_steps: int,
delay: float, tau: float):
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
phase_generator_type = 'exp' if mp_type == 'prodmp' else 'linear'
env = fancy_gym.make_bb('toy-v0', [ToyWrapper],
{'replanning_schedule': lambda pos, vel, obs, action, t: t % sub_segment_steps == 0,
'max_planning_times': max_planning_times,
'verbose': 2},
{'trajectory_generator_type': mp_type,
},
{'controller_type': 'motor'},
{'phase_generator_type': phase_generator_type,
'learn_tau': True,
'learn_delay': True
},
{'basis_generator_type': basis_generator_type,
},
fallback_max_steps=MAX_STEPS_FALLBACK)
_ = env.reset(seed=SEED)
done = False
2022-11-14 17:39:46 +01:00
planning_times = 0
while not done:
2022-11-14 17:39:46 +01:00
action = env.action_space.sample()
action[0] = tau
action[1] = delay
_obs, _reward, terminated, truncated, info = env.step(action)
done = terminated or truncated
2022-11-14 17:39:46 +01:00
delay_time_steps = int(np.round(delay / env.dt))
pos = info['positions'].flatten()
vel = info['velocities'].flatten()
# Delay only applies to first planning time
if planning_times == 0:
# Check delay is applied
assert np.all(pos[:max(1, delay_time_steps - 1)] == pos[0])
assert np.all(vel[:max(1, delay_time_steps - 2)] == vel[0])
# Check active trajectory section is different to beginning values
assert np.all(pos[max(1, delay_time_steps):] != pos[0])
assert np.all(vel[max(1, delay_time_steps)] != vel[0])
planning_times += 1
assert planning_times == max_planning_times
@pytest.mark.parametrize('mp_type', ['promp', 'prodmp'])
@pytest.mark.parametrize('max_planning_times', [1, 2, 3, 4])
@pytest.mark.parametrize('sub_segment_steps', [5, 10])
def test_replanning_schedule(mp_type: str, max_planning_times: int, sub_segment_steps: int):
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
phase_generator_type = 'exp' if mp_type == 'prodmp' else 'linear'
env = fancy_gym.make_bb('toy-v0', [ToyWrapper],
{'max_planning_times': max_planning_times,
'replanning_schedule': lambda pos, vel, obs, action, t: t % sub_segment_steps == 0,
'verbose': 2},
{'trajectory_generator_type': mp_type,
},
{'controller_type': 'motor'},
{'phase_generator_type': phase_generator_type,
'learn_tau': False,
'learn_delay': False
},
{'basis_generator_type': basis_generator_type,
},
fallback_max_steps=MAX_STEPS_FALLBACK)
_ = env.reset(seed=SEED)
for i in range(max_planning_times):
action = env.action_space.sample()
_obs, _reward, terminated, truncated, _info = env.step(action)
done = terminated or truncated
assert done