2022-10-21 16:16:49 +02:00
|
|
|
from itertools import chain
|
2022-10-24 09:24:12 +02:00
|
|
|
from types import FunctionType
|
2022-10-21 16:16:49 +02:00
|
|
|
from typing import Tuple, Type, Union, Optional
|
|
|
|
|
2023-05-18 19:07:19 +02:00
|
|
|
import gymnasium as gym
|
2022-10-21 16:16:49 +02:00
|
|
|
import numpy as np
|
|
|
|
import pytest
|
2023-07-30 18:16:47 +02:00
|
|
|
from gymnasium import register, make
|
2023-05-18 19:07:19 +02:00
|
|
|
from gymnasium.core import ActType, ObsType
|
2023-06-18 11:51:01 +02:00
|
|
|
from gymnasium import spaces
|
2022-10-21 16:16:49 +02:00
|
|
|
|
|
|
|
import fancy_gym
|
|
|
|
from fancy_gym.black_box.raw_interface_wrapper import RawInterfaceWrapper
|
2023-06-18 14:25:20 +02:00
|
|
|
from fancy_gym.utils.wrappers import TimeAwareObservation
|
|
|
|
from fancy_gym.utils.make_env_helpers import ensure_finite_time
|
2022-10-21 16:16:49 +02:00
|
|
|
|
|
|
|
SEED = 1
|
2023-08-14 16:47:05 +02:00
|
|
|
ENV_IDS = ['fancy/Reacher5d-v0', 'dm_control/ball_in_cup-catch-v0', 'metaworld/reach-v2', 'Reacher-v2']
|
2022-10-21 16:16:49 +02:00
|
|
|
WRAPPERS = [fancy_gym.envs.mujoco.reacher.MPWrapper, fancy_gym.dmc.suite.ball_in_cup.MPWrapper,
|
|
|
|
fancy_gym.meta.goal_object_change_mp_wrapper.MPWrapper, fancy_gym.open_ai.mujoco.reacher_v2.MPWrapper]
|
2023-08-14 16:47:05 +02:00
|
|
|
ALL_MP_ENVS = fancy_gym.ALL_MOVEMENT_PRIMITIVE_ENVIRONMENTS['all']
|
2022-10-21 16:16:49 +02:00
|
|
|
|
2023-06-18 15:52:17 +02:00
|
|
|
MAX_STEPS_FALLBACK = 50
|
2023-06-18 14:25:20 +02:00
|
|
|
|
2022-10-21 16:16:49 +02:00
|
|
|
|
|
|
|
class ToyEnv(gym.Env):
|
|
|
|
observation_space = gym.spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float64)
|
|
|
|
action_space = gym.spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float64)
|
|
|
|
dt = 0.02
|
|
|
|
|
|
|
|
def reset(self, *, seed: Optional[int] = None, return_info: bool = False,
|
|
|
|
options: Optional[dict] = None) -> Union[ObsType, Tuple[ObsType, dict]]:
|
2023-05-18 19:13:35 +02:00
|
|
|
obs, options = np.array([-1]), {}
|
|
|
|
return obs, options
|
2022-10-21 16:16:49 +02:00
|
|
|
|
|
|
|
def step(self, action: ActType) -> Tuple[ObsType, float, bool, dict]:
|
2023-05-18 19:13:35 +02:00
|
|
|
obs, reward, terminated, truncated, info = np.array([-1]), 1, False, False, {}
|
|
|
|
return obs, reward, terminated, truncated, info
|
2022-10-21 16:16:49 +02:00
|
|
|
|
2023-11-21 20:19:47 +01:00
|
|
|
def render(self):
|
2022-10-21 16:16:49 +02:00
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class ToyWrapper(RawInterfaceWrapper):
|
|
|
|
|
|
|
|
@property
|
|
|
|
def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
|
|
|
|
return np.ones(self.action_space.shape)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
|
|
|
|
return np.zeros(self.action_space.shape)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture(scope="session", autouse=True)
|
|
|
|
def setup():
|
|
|
|
register(
|
|
|
|
id=f'toy-v0',
|
|
|
|
entry_point='test.test_black_box:ToyEnv',
|
|
|
|
max_episode_steps=50,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
|
|
|
|
@pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS))
|
|
|
|
@pytest.mark.parametrize('add_time_aware_wrapper_before', [True, False])
|
|
|
|
def test_learn_sub_trajectories(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWrapper]],
|
|
|
|
add_time_aware_wrapper_before: bool):
|
|
|
|
env_id, wrapper_class = env_wrap
|
2023-07-30 18:16:47 +02:00
|
|
|
env_step = TimeAwareObservation(ensure_finite_time(make(env_id, SEED), MAX_STEPS_FALLBACK))
|
2022-10-21 16:16:49 +02:00
|
|
|
wrappers = [wrapper_class]
|
|
|
|
|
|
|
|
# has time aware wrapper
|
|
|
|
if add_time_aware_wrapper_before:
|
|
|
|
wrappers += [TimeAwareObservation]
|
|
|
|
|
|
|
|
env = fancy_gym.make_bb(env_id, [wrapper_class], {'learn_sub_trajectories': True, 'verbose': 2},
|
|
|
|
{'trajectory_generator_type': mp_type},
|
|
|
|
{'controller_type': 'motor'},
|
|
|
|
{'phase_generator_type': 'exp'},
|
2023-07-23 12:31:47 +02:00
|
|
|
{'basis_generator_type': 'rbf'}, fallback_max_steps=MAX_STEPS_FALLBACK)
|
|
|
|
env.reset(seed=SEED)
|
2022-10-21 16:16:49 +02:00
|
|
|
|
|
|
|
assert env.learn_sub_trajectories
|
2023-06-18 14:25:20 +02:00
|
|
|
assert env.spec.max_episode_steps
|
|
|
|
assert env_step.spec.max_episode_steps
|
2022-10-21 16:16:49 +02:00
|
|
|
assert env.traj_gen.learn_tau
|
|
|
|
# This also verifies we are not adding the TimeAwareObservationWrapper twice
|
2023-06-18 14:25:20 +02:00
|
|
|
assert spaces.flatten_space(env_step.observation_space) == spaces.flatten_space(env.observation_space)
|
2022-10-21 16:16:49 +02:00
|
|
|
|
2023-05-18 17:31:40 +02:00
|
|
|
done = True
|
2022-10-21 16:16:49 +02:00
|
|
|
|
|
|
|
for i in range(25):
|
2023-05-18 17:31:40 +02:00
|
|
|
if done:
|
2023-06-18 11:51:01 +02:00
|
|
|
env.reset(seed=SEED)
|
2023-08-14 16:47:05 +02:00
|
|
|
|
2022-10-21 16:16:49 +02:00
|
|
|
action = env.action_space.sample()
|
2023-05-18 17:31:40 +02:00
|
|
|
_obs, _reward, terminated, truncated, info = env.step(action)
|
|
|
|
done = terminated or truncated
|
2022-10-21 16:16:49 +02:00
|
|
|
|
|
|
|
length = info['trajectory_length']
|
|
|
|
|
2023-05-27 12:48:45 +02:00
|
|
|
if not done:
|
2022-10-21 16:16:49 +02:00
|
|
|
assert length == np.round(action[0] / env.dt)
|
|
|
|
assert length == np.round(env.traj_gen.tau.numpy() / env.dt)
|
|
|
|
else:
|
|
|
|
# When done trajectory could be shorter due to termination.
|
|
|
|
assert length <= np.round(action[0] / env.dt)
|
|
|
|
assert length <= np.round(env.traj_gen.tau.numpy() / env.dt)
|
|
|
|
|
|
|
|
|
2022-11-14 17:39:46 +01:00
|
|
|
@pytest.mark.parametrize('mp_type', ['promp', 'dmp', 'prodmp'])
|
2022-10-21 16:16:49 +02:00
|
|
|
@pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS))
|
|
|
|
@pytest.mark.parametrize('add_time_aware_wrapper_before', [True, False])
|
|
|
|
@pytest.mark.parametrize('replanning_time', [10, 100, 1000])
|
|
|
|
def test_replanning_time(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWrapper]],
|
|
|
|
add_time_aware_wrapper_before: bool, replanning_time: int):
|
|
|
|
env_id, wrapper_class = env_wrap
|
2023-07-30 18:16:47 +02:00
|
|
|
env_step = TimeAwareObservation(ensure_finite_time(make(env_id, SEED), MAX_STEPS_FALLBACK))
|
2022-10-21 16:16:49 +02:00
|
|
|
wrappers = [wrapper_class]
|
|
|
|
|
|
|
|
# has time aware wrapper
|
|
|
|
if add_time_aware_wrapper_before:
|
|
|
|
wrappers += [TimeAwareObservation]
|
|
|
|
|
2023-05-18 17:31:40 +02:00
|
|
|
def replanning_schedule(c_pos, c_vel, obs, c_action, t): return t % replanning_time == 0
|
2022-10-21 16:16:49 +02:00
|
|
|
|
2022-11-14 17:39:46 +01:00
|
|
|
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
|
|
|
phase_generator_type = 'exp' if 'dmp' in mp_type else 'linear'
|
|
|
|
|
2022-10-21 16:16:49 +02:00
|
|
|
env = fancy_gym.make_bb(env_id, [wrapper_class], {'replanning_schedule': replanning_schedule, 'verbose': 2},
|
|
|
|
{'trajectory_generator_type': mp_type},
|
|
|
|
{'controller_type': 'motor'},
|
2022-11-14 17:39:46 +01:00
|
|
|
{'phase_generator_type': phase_generator_type},
|
2023-07-23 12:31:47 +02:00
|
|
|
{'basis_generator_type': basis_generator_type}, fallback_max_steps=MAX_STEPS_FALLBACK)
|
|
|
|
env.reset(seed=SEED)
|
2022-10-21 16:16:49 +02:00
|
|
|
|
|
|
|
assert env.do_replanning
|
2023-06-18 14:25:20 +02:00
|
|
|
assert env.spec.max_episode_steps
|
|
|
|
assert env_step.spec.max_episode_steps
|
2022-10-24 09:24:12 +02:00
|
|
|
assert callable(env.replanning_schedule)
|
2022-10-21 16:16:49 +02:00
|
|
|
# This also verifies we are not adding the TimeAwareObservationWrapper twice
|
2023-06-18 14:25:20 +02:00
|
|
|
assert spaces.flatten_space(env_step.observation_space) == spaces.flatten_space(env.observation_space)
|
2022-10-21 16:16:49 +02:00
|
|
|
|
2023-06-18 11:51:01 +02:00
|
|
|
env.reset(seed=SEED)
|
2022-10-21 16:16:49 +02:00
|
|
|
|
|
|
|
episode_steps = env_step.spec.max_episode_steps // replanning_time
|
|
|
|
# Make 3 episodes, total steps depend on the replanning steps
|
|
|
|
for i in range(3 * episode_steps):
|
|
|
|
action = env.action_space.sample()
|
2023-05-18 17:31:40 +02:00
|
|
|
_obs, _reward, terminated, truncated, info = env.step(action)
|
|
|
|
done = terminated or truncated
|
2022-10-21 16:16:49 +02:00
|
|
|
|
|
|
|
length = info['trajectory_length']
|
|
|
|
|
2023-05-18 17:31:40 +02:00
|
|
|
if done:
|
2022-10-21 16:16:49 +02:00
|
|
|
# Check if number of steps until termination match the replanning interval
|
2023-05-18 17:31:40 +02:00
|
|
|
print(done, (i + 1), episode_steps)
|
2022-10-21 16:16:49 +02:00
|
|
|
assert (i + 1) % episode_steps == 0
|
2023-06-18 11:51:01 +02:00
|
|
|
env.reset(seed=SEED)
|
2022-10-21 16:16:49 +02:00
|
|
|
|
|
|
|
assert replanning_schedule(None, None, None, None, length)
|
2022-11-14 17:39:46 +01:00
|
|
|
|
2023-05-18 17:31:40 +02:00
|
|
|
|
2022-11-14 17:39:46 +01:00
|
|
|
@pytest.mark.parametrize('mp_type', ['promp', 'prodmp'])
|
|
|
|
@pytest.mark.parametrize('max_planning_times', [1, 2, 3, 4])
|
|
|
|
@pytest.mark.parametrize('sub_segment_steps', [5, 10])
|
|
|
|
def test_max_planning_times(mp_type: str, max_planning_times: int, sub_segment_steps: int):
|
|
|
|
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
|
|
|
phase_generator_type = 'exp' if mp_type == 'prodmp' else 'linear'
|
|
|
|
env = fancy_gym.make_bb('toy-v0', [ToyWrapper],
|
|
|
|
{'max_planning_times': max_planning_times,
|
|
|
|
'replanning_schedule': lambda pos, vel, obs, action, t: t % sub_segment_steps == 0,
|
|
|
|
'verbose': 2},
|
|
|
|
{'trajectory_generator_type': mp_type,
|
|
|
|
},
|
|
|
|
{'controller_type': 'motor'},
|
|
|
|
{'phase_generator_type': phase_generator_type,
|
|
|
|
'learn_tau': False,
|
|
|
|
'learn_delay': False
|
|
|
|
},
|
|
|
|
{'basis_generator_type': basis_generator_type,
|
|
|
|
},
|
2023-07-23 12:31:47 +02:00
|
|
|
fallback_max_steps=MAX_STEPS_FALLBACK)
|
|
|
|
|
2023-06-18 11:51:01 +02:00
|
|
|
_ = env.reset(seed=SEED)
|
2023-05-18 17:31:40 +02:00
|
|
|
done = False
|
2022-11-14 17:39:46 +01:00
|
|
|
planning_times = 0
|
2023-05-18 17:31:40 +02:00
|
|
|
while not done:
|
|
|
|
action = env.action_space.sample()
|
|
|
|
_obs, _reward, terminated, truncated, _info = env.step(action)
|
|
|
|
done = terminated or truncated
|
2022-11-14 17:39:46 +01:00
|
|
|
planning_times += 1
|
|
|
|
assert planning_times == max_planning_times
|
|
|
|
|
2023-05-18 17:31:40 +02:00
|
|
|
|
2022-11-14 17:39:46 +01:00
|
|
|
@pytest.mark.parametrize('mp_type', ['promp', 'prodmp'])
|
|
|
|
@pytest.mark.parametrize('max_planning_times', [1, 2, 3, 4])
|
|
|
|
@pytest.mark.parametrize('sub_segment_steps', [5, 10])
|
|
|
|
@pytest.mark.parametrize('tau', [0.5, 1.0, 1.5, 2.0])
|
|
|
|
def test_replanning_with_learn_tau(mp_type: str, max_planning_times: int, sub_segment_steps: int, tau: float):
|
|
|
|
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
|
|
|
phase_generator_type = 'exp' if mp_type == 'prodmp' else 'linear'
|
|
|
|
env = fancy_gym.make_bb('toy-v0', [ToyWrapper],
|
|
|
|
{'replanning_schedule': lambda pos, vel, obs, action, t: t % sub_segment_steps == 0,
|
|
|
|
'max_planning_times': max_planning_times,
|
|
|
|
'verbose': 2},
|
|
|
|
{'trajectory_generator_type': mp_type,
|
|
|
|
},
|
|
|
|
{'controller_type': 'motor'},
|
|
|
|
{'phase_generator_type': phase_generator_type,
|
|
|
|
'learn_tau': True,
|
|
|
|
'learn_delay': False
|
|
|
|
},
|
|
|
|
{'basis_generator_type': basis_generator_type,
|
|
|
|
},
|
2023-07-23 12:31:47 +02:00
|
|
|
fallback_max_steps=MAX_STEPS_FALLBACK)
|
|
|
|
|
2023-06-18 11:51:01 +02:00
|
|
|
_ = env.reset(seed=SEED)
|
2023-05-18 17:31:40 +02:00
|
|
|
done = False
|
2022-11-14 17:39:46 +01:00
|
|
|
planning_times = 0
|
2023-05-18 17:31:40 +02:00
|
|
|
while not done:
|
2022-11-14 17:39:46 +01:00
|
|
|
action = env.action_space.sample()
|
|
|
|
action[0] = tau
|
2023-05-18 17:31:40 +02:00
|
|
|
_obs, _reward, terminated, truncated, _info = env.step(action)
|
|
|
|
done = terminated or truncated
|
2022-11-14 17:39:46 +01:00
|
|
|
planning_times += 1
|
|
|
|
assert planning_times == max_planning_times
|
|
|
|
|
2023-05-18 17:31:40 +02:00
|
|
|
|
2022-11-14 17:39:46 +01:00
|
|
|
@pytest.mark.parametrize('mp_type', ['promp', 'prodmp'])
|
|
|
|
@pytest.mark.parametrize('max_planning_times', [1, 2, 3, 4])
|
|
|
|
@pytest.mark.parametrize('sub_segment_steps', [5, 10])
|
|
|
|
@pytest.mark.parametrize('delay', [0.1, 0.25, 0.5, 0.75])
|
|
|
|
def test_replanning_with_learn_delay(mp_type: str, max_planning_times: int, sub_segment_steps: int, delay: float):
|
|
|
|
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
|
|
|
phase_generator_type = 'exp' if mp_type == 'prodmp' else 'linear'
|
|
|
|
env = fancy_gym.make_bb('toy-v0', [ToyWrapper],
|
2023-05-18 17:31:40 +02:00
|
|
|
{'replanning_schedule': lambda pos, vel, obs, action, t: t % sub_segment_steps == 0,
|
|
|
|
'max_planning_times': max_planning_times,
|
|
|
|
'verbose': 2},
|
|
|
|
{'trajectory_generator_type': mp_type,
|
|
|
|
},
|
|
|
|
{'controller_type': 'motor'},
|
|
|
|
{'phase_generator_type': phase_generator_type,
|
|
|
|
'learn_tau': False,
|
|
|
|
'learn_delay': True
|
|
|
|
},
|
|
|
|
{'basis_generator_type': basis_generator_type,
|
|
|
|
},
|
2023-07-23 12:31:47 +02:00
|
|
|
fallback_max_steps=MAX_STEPS_FALLBACK)
|
|
|
|
|
2023-06-18 11:51:01 +02:00
|
|
|
_ = env.reset(seed=SEED)
|
2023-05-18 17:31:40 +02:00
|
|
|
done = False
|
2022-11-14 17:39:46 +01:00
|
|
|
planning_times = 0
|
2023-05-18 17:31:40 +02:00
|
|
|
while not done:
|
2022-11-14 17:39:46 +01:00
|
|
|
action = env.action_space.sample()
|
|
|
|
action[0] = delay
|
2023-05-18 17:31:40 +02:00
|
|
|
_obs, _reward, terminated, truncated, info = env.step(action)
|
|
|
|
done = terminated or truncated
|
2022-11-14 17:39:46 +01:00
|
|
|
|
|
|
|
delay_time_steps = int(np.round(delay / env.dt))
|
|
|
|
pos = info['positions'].flatten()
|
|
|
|
vel = info['velocities'].flatten()
|
|
|
|
|
|
|
|
# Check beginning is all same (only true for linear basis)
|
|
|
|
if planning_times == 0:
|
|
|
|
assert np.all(pos[:max(1, delay_time_steps - 1)] == pos[0])
|
|
|
|
assert np.all(vel[:max(1, delay_time_steps - 2)] == vel[0])
|
|
|
|
|
|
|
|
# only valid when delay < sub_segment_steps
|
|
|
|
elif planning_times > 0 and delay_time_steps < sub_segment_steps:
|
|
|
|
assert np.all(pos[1:max(1, delay_time_steps - 1)] != pos[0])
|
|
|
|
assert np.all(vel[1:max(1, delay_time_steps - 2)] != vel[0])
|
|
|
|
|
|
|
|
# Check active trajectory section is different to beginning values
|
|
|
|
assert np.all(pos[max(1, delay_time_steps):] != pos[0])
|
|
|
|
assert np.all(vel[max(1, delay_time_steps)] != vel[0])
|
|
|
|
|
|
|
|
planning_times += 1
|
|
|
|
|
|
|
|
assert planning_times == max_planning_times
|
|
|
|
|
2023-05-18 17:31:40 +02:00
|
|
|
|
2022-11-14 17:39:46 +01:00
|
|
|
@pytest.mark.parametrize('mp_type', ['promp', 'prodmp'])
|
|
|
|
@pytest.mark.parametrize('max_planning_times', [1, 2, 3])
|
|
|
|
@pytest.mark.parametrize('sub_segment_steps', [5, 10, 15])
|
|
|
|
@pytest.mark.parametrize('delay', [0, 0.25, 0.5, 0.75])
|
|
|
|
@pytest.mark.parametrize('tau', [0.5, 0.75, 1.0])
|
|
|
|
def test_replanning_with_learn_delay_and_tau(mp_type: str, max_planning_times: int, sub_segment_steps: int,
|
|
|
|
delay: float, tau: float):
|
|
|
|
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
|
|
|
phase_generator_type = 'exp' if mp_type == 'prodmp' else 'linear'
|
|
|
|
env = fancy_gym.make_bb('toy-v0', [ToyWrapper],
|
2023-05-18 17:31:40 +02:00
|
|
|
{'replanning_schedule': lambda pos, vel, obs, action, t: t % sub_segment_steps == 0,
|
|
|
|
'max_planning_times': max_planning_times,
|
|
|
|
'verbose': 2},
|
|
|
|
{'trajectory_generator_type': mp_type,
|
|
|
|
},
|
|
|
|
{'controller_type': 'motor'},
|
|
|
|
{'phase_generator_type': phase_generator_type,
|
|
|
|
'learn_tau': True,
|
|
|
|
'learn_delay': True
|
|
|
|
},
|
|
|
|
{'basis_generator_type': basis_generator_type,
|
|
|
|
},
|
2023-07-23 12:31:47 +02:00
|
|
|
fallback_max_steps=MAX_STEPS_FALLBACK)
|
|
|
|
|
2023-06-18 11:51:01 +02:00
|
|
|
_ = env.reset(seed=SEED)
|
2023-05-18 17:31:40 +02:00
|
|
|
done = False
|
2022-11-14 17:39:46 +01:00
|
|
|
planning_times = 0
|
2023-05-18 17:31:40 +02:00
|
|
|
while not done:
|
2022-11-14 17:39:46 +01:00
|
|
|
action = env.action_space.sample()
|
|
|
|
action[0] = tau
|
|
|
|
action[1] = delay
|
2023-05-18 17:31:40 +02:00
|
|
|
_obs, _reward, terminated, truncated, info = env.step(action)
|
|
|
|
done = terminated or truncated
|
2022-11-14 17:39:46 +01:00
|
|
|
|
|
|
|
delay_time_steps = int(np.round(delay / env.dt))
|
|
|
|
|
|
|
|
pos = info['positions'].flatten()
|
|
|
|
vel = info['velocities'].flatten()
|
|
|
|
|
|
|
|
# Delay only applies to first planning time
|
|
|
|
if planning_times == 0:
|
|
|
|
# Check delay is applied
|
|
|
|
assert np.all(pos[:max(1, delay_time_steps - 1)] == pos[0])
|
|
|
|
assert np.all(vel[:max(1, delay_time_steps - 2)] == vel[0])
|
|
|
|
# Check active trajectory section is different to beginning values
|
|
|
|
assert np.all(pos[max(1, delay_time_steps):] != pos[0])
|
|
|
|
assert np.all(vel[max(1, delay_time_steps)] != vel[0])
|
|
|
|
|
|
|
|
planning_times += 1
|
|
|
|
|
2022-11-20 21:56:32 +01:00
|
|
|
assert planning_times == max_planning_times
|
|
|
|
|
2023-05-18 17:31:40 +02:00
|
|
|
|
2022-11-20 21:56:32 +01:00
|
|
|
@pytest.mark.parametrize('mp_type', ['promp', 'prodmp'])
|
|
|
|
@pytest.mark.parametrize('max_planning_times', [1, 2, 3, 4])
|
|
|
|
@pytest.mark.parametrize('sub_segment_steps', [5, 10])
|
|
|
|
def test_replanning_schedule(mp_type: str, max_planning_times: int, sub_segment_steps: int):
|
|
|
|
basis_generator_type = 'prodmp' if mp_type == 'prodmp' else 'rbf'
|
|
|
|
phase_generator_type = 'exp' if mp_type == 'prodmp' else 'linear'
|
|
|
|
env = fancy_gym.make_bb('toy-v0', [ToyWrapper],
|
|
|
|
{'max_planning_times': max_planning_times,
|
|
|
|
'replanning_schedule': lambda pos, vel, obs, action, t: t % sub_segment_steps == 0,
|
|
|
|
'verbose': 2},
|
|
|
|
{'trajectory_generator_type': mp_type,
|
|
|
|
},
|
|
|
|
{'controller_type': 'motor'},
|
|
|
|
{'phase_generator_type': phase_generator_type,
|
|
|
|
'learn_tau': False,
|
|
|
|
'learn_delay': False
|
|
|
|
},
|
|
|
|
{'basis_generator_type': basis_generator_type,
|
|
|
|
},
|
2023-07-23 12:31:47 +02:00
|
|
|
fallback_max_steps=MAX_STEPS_FALLBACK)
|
|
|
|
|
2023-06-18 11:51:01 +02:00
|
|
|
_ = env.reset(seed=SEED)
|
2022-11-20 21:56:32 +01:00
|
|
|
for i in range(max_planning_times):
|
2023-05-18 17:31:40 +02:00
|
|
|
action = env.action_space.sample()
|
|
|
|
_obs, _reward, terminated, truncated, _info = env.step(action)
|
|
|
|
done = terminated or truncated
|
|
|
|
assert done
|