2022-06-29 09:37:18 +02:00
|
|
|
from abc import ABC
|
|
|
|
from typing import Tuple
|
2022-04-28 09:05:28 +02:00
|
|
|
|
|
|
|
import gym
|
|
|
|
import numpy as np
|
|
|
|
from gym import spaces
|
|
|
|
from mp_pytorch.mp.mp_interfaces import MPInterface
|
|
|
|
|
2022-05-03 19:51:54 +02:00
|
|
|
from alr_envs.mp.controllers.base_controller import BaseController
|
2022-06-29 09:37:18 +02:00
|
|
|
from alr_envs.mp.raw_interface_wrapper import RawInterfaceWrapper
|
2022-05-03 19:51:54 +02:00
|
|
|
|
2022-04-28 09:05:28 +02:00
|
|
|
|
2022-06-29 09:37:18 +02:00
|
|
|
class BlackBoxWrapper(gym.ObservationWrapper, ABC):
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
env: RawInterfaceWrapper,
|
|
|
|
trajectory_generator: MPInterface, tracking_controller: BaseController,
|
|
|
|
duration: float, verbose: int = 1, sequencing=True, reward_aggregation: callable = np.sum):
|
|
|
|
"""
|
|
|
|
gym.Wrapper for leveraging a black box approach with a trajectory generator.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
env: The (wrapped) environment this wrapper is applied on
|
|
|
|
trajectory_generator: Generates the full or partial trajectory
|
|
|
|
tracking_controller: Translates the desired trajectory to raw action sequences
|
|
|
|
duration: Length of the trajectory of the movement primitive in seconds
|
|
|
|
verbose: level of detail for returned values in info dict.
|
|
|
|
reward_aggregation: function that takes the np.ndarray of step rewards as input and returns the trajectory
|
|
|
|
reward, default summation over all values.
|
|
|
|
"""
|
2022-04-28 09:05:28 +02:00
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.env = env
|
|
|
|
self.duration = duration
|
|
|
|
self.traj_steps = int(duration / self.dt)
|
|
|
|
self.post_traj_steps = self.env.spec.max_episode_steps - self.traj_steps
|
2022-06-28 16:05:09 +02:00
|
|
|
# duration = self.env.max_episode_steps * self.dt
|
2022-04-28 09:05:28 +02:00
|
|
|
|
2022-06-29 09:37:18 +02:00
|
|
|
# trajectory generation
|
|
|
|
self.trajectory_generator = trajectory_generator
|
|
|
|
self.tracking_controller = tracking_controller
|
|
|
|
# self.weight_scale = weight_scale
|
2022-04-29 18:46:09 +02:00
|
|
|
self.time_steps = np.linspace(0, self.duration, self.traj_steps)
|
2022-06-29 09:37:18 +02:00
|
|
|
self.trajectory_generator.set_mp_times(self.time_steps)
|
|
|
|
# self.trajectory_generator.set_mp_duration(self.time_steps, dt)
|
|
|
|
# action_bounds = np.inf * np.ones((np.prod(self.trajectory_generator.num_params)))
|
|
|
|
self.reward_aggregation = reward_aggregation
|
2022-04-28 09:05:28 +02:00
|
|
|
|
2022-06-29 09:37:18 +02:00
|
|
|
# spaces
|
|
|
|
self.mp_action_space = self.get_mp_action_space()
|
2022-06-28 16:05:09 +02:00
|
|
|
self.action_space = self.get_action_space()
|
2022-06-29 09:37:18 +02:00
|
|
|
self.observation_space = spaces.Box(low=self.env.observation_space.low[self.env.context_mask],
|
|
|
|
high=self.env.observation_space.high[self.env.context_mask],
|
2022-04-28 09:05:28 +02:00
|
|
|
dtype=self.env.observation_space.dtype)
|
|
|
|
|
2022-06-29 09:37:18 +02:00
|
|
|
# rendering
|
|
|
|
self.render_mode = None
|
|
|
|
self.render_kwargs = {}
|
|
|
|
|
2022-06-28 16:05:09 +02:00
|
|
|
self.verbose = verbose
|
|
|
|
|
2022-06-29 09:37:18 +02:00
|
|
|
@property
|
|
|
|
def dt(self):
|
|
|
|
return self.env.dt
|
|
|
|
|
|
|
|
def observation(self, observation):
|
|
|
|
return observation[self.env.context_mask]
|
|
|
|
|
2022-04-28 09:05:28 +02:00
|
|
|
def get_trajectory(self, action: np.ndarray) -> Tuple:
|
2022-05-05 18:50:20 +02:00
|
|
|
# TODO: this follows the implementation of the mp_pytorch library which includes the parameters tau and delay at
|
2022-05-03 19:51:54 +02:00
|
|
|
# the beginning of the array.
|
2022-06-29 09:37:18 +02:00
|
|
|
# ignore_indices = int(self.trajectory_generator.learn_tau) + int(self.trajectory_generator.learn_delay)
|
|
|
|
# scaled_mp_params = action.copy()
|
|
|
|
# scaled_mp_params[ignore_indices:] *= self.weight_scale
|
|
|
|
|
|
|
|
clipped_params = np.clip(action, self.mp_action_space.low, self.mp_action_space.high)
|
|
|
|
self.trajectory_generator.set_params(clipped_params)
|
|
|
|
self.trajectory_generator.set_boundary_conditions(bc_time=self.time_steps[:1], bc_pos=self.current_pos,
|
|
|
|
bc_vel=self.current_vel)
|
|
|
|
traj_dict = self.trajectory_generator.get_mp_trajs(get_pos=True, get_vel=True)
|
2022-04-28 09:05:28 +02:00
|
|
|
trajectory_tensor, velocity_tensor = traj_dict['pos'], traj_dict['vel']
|
|
|
|
|
|
|
|
trajectory = trajectory_tensor.numpy()
|
|
|
|
velocity = velocity_tensor.numpy()
|
2022-04-29 18:46:09 +02:00
|
|
|
|
2022-06-28 16:05:09 +02:00
|
|
|
# TODO: Do we need this or does mp_pytorch have this?
|
2022-04-28 09:05:28 +02:00
|
|
|
if self.post_traj_steps > 0:
|
|
|
|
trajectory = np.vstack([trajectory, np.tile(trajectory[-1, :], [self.post_traj_steps, 1])])
|
2022-06-29 09:37:18 +02:00
|
|
|
velocity = np.vstack([velocity, np.zeros(shape=(self.post_traj_steps, self.trajectory_generator.num_dof))])
|
2022-04-28 09:05:28 +02:00
|
|
|
|
|
|
|
return trajectory, velocity
|
|
|
|
|
2022-06-28 16:05:09 +02:00
|
|
|
def get_mp_action_space(self):
|
2022-06-29 09:37:18 +02:00
|
|
|
"""This function can be used to set up an individual space for the parameters of the trajectory_generator."""
|
|
|
|
min_action_bounds, max_action_bounds = self.trajectory_generator.get_param_bounds()
|
2022-05-05 18:50:20 +02:00
|
|
|
mp_action_space = gym.spaces.Box(low=min_action_bounds.numpy(), high=max_action_bounds.numpy(),
|
2022-06-28 16:05:09 +02:00
|
|
|
dtype=np.float32)
|
2022-05-05 18:50:20 +02:00
|
|
|
return mp_action_space
|
|
|
|
|
2022-06-28 16:05:09 +02:00
|
|
|
def get_action_space(self):
|
2022-05-03 19:51:54 +02:00
|
|
|
"""
|
|
|
|
This function can be used to modify the action space for considering actions which are not learned via motion
|
|
|
|
primitives. E.g. ball releasing time for the beer pong task. By default, it is the parameter space of the
|
|
|
|
motion primitive.
|
|
|
|
Only needs to be overwritten if the action space needs to be modified.
|
|
|
|
"""
|
2022-06-28 16:05:09 +02:00
|
|
|
try:
|
|
|
|
return self.mp_action_space
|
|
|
|
except AttributeError:
|
|
|
|
return self.get_mp_action_space()
|
2022-05-03 19:51:54 +02:00
|
|
|
|
2022-04-28 09:05:28 +02:00
|
|
|
def step(self, action: np.ndarray):
|
|
|
|
""" This function generates a trajectory based on a MP and then does the usual loop over reset and step"""
|
2022-04-29 18:46:09 +02:00
|
|
|
# TODO: Think about sequencing
|
|
|
|
# TODO: Reward Function rather here?
|
|
|
|
# agent to learn when to release the ball
|
2022-05-03 19:51:54 +02:00
|
|
|
mp_params, env_spec_params = self._episode_callback(action)
|
|
|
|
trajectory, velocity = self.get_trajectory(mp_params)
|
2022-04-28 09:05:28 +02:00
|
|
|
|
2022-06-28 16:05:09 +02:00
|
|
|
# TODO
|
|
|
|
# self.time_steps = np.linspace(0, learned_duration, self.traj_steps)
|
2022-06-29 09:37:18 +02:00
|
|
|
# self.trajectory_generator.set_mp_times(self.time_steps)
|
2022-06-28 16:05:09 +02:00
|
|
|
|
2022-04-28 09:05:28 +02:00
|
|
|
trajectory_length = len(trajectory)
|
2022-06-29 09:37:18 +02:00
|
|
|
rewards = np.zeros(shape=(trajectory_length,))
|
2022-06-28 16:05:09 +02:00
|
|
|
if self.verbose >= 2:
|
2022-05-03 19:51:54 +02:00
|
|
|
actions = np.zeros(shape=(trajectory_length,) + self.env.action_space.shape)
|
2022-04-28 09:05:28 +02:00
|
|
|
observations = np.zeros(shape=(trajectory_length,) + self.env.observation_space.shape,
|
2022-06-28 16:05:09 +02:00
|
|
|
dtype=self.env.observation_space.dtype)
|
2022-04-28 09:05:28 +02:00
|
|
|
|
|
|
|
infos = dict()
|
2022-06-29 09:37:18 +02:00
|
|
|
done = False
|
2022-04-28 09:05:28 +02:00
|
|
|
|
|
|
|
for t, pos_vel in enumerate(zip(trajectory, velocity)):
|
2022-06-29 09:37:18 +02:00
|
|
|
step_action = self.tracking_controller.get_action(pos_vel[0], pos_vel[1], self.current_pos,
|
|
|
|
self.current_vel)
|
2022-06-28 16:05:09 +02:00
|
|
|
step_action = self._step_callback(t, env_spec_params, step_action) # include possible callback info
|
2022-05-03 19:51:54 +02:00
|
|
|
c_action = np.clip(step_action, self.env.action_space.low, self.env.action_space.high)
|
2022-05-05 18:50:20 +02:00
|
|
|
# print('step/clipped action ratio: ', step_action/c_action)
|
2022-05-03 19:51:54 +02:00
|
|
|
obs, c_reward, done, info = self.env.step(c_action)
|
2022-06-29 09:37:18 +02:00
|
|
|
rewards[t] = c_reward
|
|
|
|
|
2022-05-03 19:51:54 +02:00
|
|
|
if self.verbose >= 2:
|
|
|
|
actions[t, :] = c_action
|
|
|
|
observations[t, :] = obs
|
2022-06-29 09:37:18 +02:00
|
|
|
|
2022-04-28 09:05:28 +02:00
|
|
|
for k, v in info.items():
|
|
|
|
elems = infos.get(k, [None] * trajectory_length)
|
|
|
|
elems[t] = v
|
|
|
|
infos[k] = elems
|
2022-06-29 09:37:18 +02:00
|
|
|
|
|
|
|
if self.render_mode is not None:
|
2022-04-28 09:05:28 +02:00
|
|
|
self.render(mode=self.render_mode, **self.render_kwargs)
|
2022-06-29 09:37:18 +02:00
|
|
|
|
|
|
|
if done or self.env.do_replanning(self.env.current_pos, self.env.current_vel, obs, c_action, t):
|
2022-04-28 09:05:28 +02:00
|
|
|
break
|
2022-06-29 09:37:18 +02:00
|
|
|
|
2022-04-28 09:05:28 +02:00
|
|
|
infos.update({k: v[:t + 1] for k, v in infos.items()})
|
2022-06-29 09:37:18 +02:00
|
|
|
|
2022-05-03 19:51:54 +02:00
|
|
|
if self.verbose >= 2:
|
|
|
|
infos['trajectory'] = trajectory
|
2022-05-02 15:06:21 +02:00
|
|
|
infos['step_actions'] = actions[:t + 1]
|
|
|
|
infos['step_observations'] = observations[:t + 1]
|
|
|
|
infos['step_rewards'] = rewards[:t + 1]
|
2022-06-29 09:37:18 +02:00
|
|
|
|
2022-05-29 11:58:01 +02:00
|
|
|
infos['trajectory_length'] = t + 1
|
2022-06-29 09:37:18 +02:00
|
|
|
trajectory_return = self.reward_aggregation(rewards[:t + 1])
|
2022-05-03 19:51:54 +02:00
|
|
|
return self.get_observation_from_step(obs), trajectory_return, done, infos
|
2022-04-28 09:05:28 +02:00
|
|
|
|
|
|
|
def reset(self):
|
|
|
|
return self.get_observation_from_step(self.env.reset())
|
|
|
|
|
|
|
|
def render(self, mode='human', **kwargs):
|
|
|
|
"""Only set render options here, such that they can be used during the rollout.
|
|
|
|
This only needs to be called once"""
|
|
|
|
self.render_mode = mode
|
|
|
|
self.render_kwargs = kwargs
|
|
|
|
# self.env.render(mode=self.render_mode, **self.render_kwargs)
|
|
|
|
self.env.render(mode=self.render_mode)
|
|
|
|
|
|
|
|
def get_observation_from_step(self, observation: np.ndarray) -> np.ndarray:
|
|
|
|
return observation[self.active_obs]
|
2022-04-29 18:46:09 +02:00
|
|
|
|
2022-05-31 19:41:08 +02:00
|
|
|
def seed(self, seed=None):
|
|
|
|
self.env.seed(seed)
|
|
|
|
|
2022-04-29 18:46:09 +02:00
|
|
|
def plot_trajs(self, des_trajs, des_vels):
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import matplotlib
|
|
|
|
matplotlib.use('TkAgg')
|
|
|
|
pos_fig = plt.figure('positions')
|
|
|
|
vel_fig = plt.figure('velocities')
|
|
|
|
for i in range(des_trajs.shape[1]):
|
|
|
|
plt.figure(pos_fig.number)
|
|
|
|
plt.subplot(des_trajs.shape[1], 1, i + 1)
|
2022-06-28 16:05:09 +02:00
|
|
|
plt.plot(np.ones(des_trajs.shape[0]) * self.current_pos[i])
|
2022-04-29 18:46:09 +02:00
|
|
|
plt.plot(des_trajs[:, i])
|
|
|
|
|
|
|
|
plt.figure(vel_fig.number)
|
|
|
|
plt.subplot(des_vels.shape[1], 1, i + 1)
|
2022-06-28 16:05:09 +02:00
|
|
|
plt.plot(np.ones(des_trajs.shape[0]) * self.current_vel[i])
|
2022-04-29 18:46:09 +02:00
|
|
|
plt.plot(des_vels[:, i])
|