This commit is contained in:
Maximilian Huettenrauch 2021-05-10 12:17:52 +02:00
parent 36bf9b5b6a
commit b4ad3e6ddd
8 changed files with 104 additions and 36 deletions

View File

@ -129,6 +129,25 @@ register(
} }
) )
register(
id='EpisodicSimpleReacher-v0',
entry_point='alr_envs.classic_control:EpisodicSimpleReacherEnv',
max_episode_steps=200,
kwargs={
"n_links": 2,
}
)
register(
id='EpisodicSimpleReacher-v1',
entry_point='alr_envs.classic_control:EpisodicSimpleReacherEnv',
max_episode_steps=200,
kwargs={
"n_links": 2,
"random_start": False
}
)
register( register(
id='LongSimpleReacher-v0', id='LongSimpleReacher-v0',
entry_point='alr_envs.classic_control:SimpleReacherEnv', entry_point='alr_envs.classic_control:SimpleReacherEnv',
@ -186,7 +205,7 @@ register(
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env', entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
# max_episode_steps=1, # max_episode_steps=1,
kwargs={ kwargs={
"name": "alr_envs:SimpleReacher-v0", "name": "alr_envs:EpisodicSimpleReacher-v0",
"num_dof": 2, "num_dof": 2,
"num_basis": 5, "num_basis": 5,
"duration": 2, "duration": 2,
@ -202,7 +221,7 @@ register(
entry_point='alr_envs.utils.make_env_helpers:make_dmp_env', entry_point='alr_envs.utils.make_env_helpers:make_dmp_env',
# max_episode_steps=1, # max_episode_steps=1,
kwargs={ kwargs={
"name": "alr_envs:SimpleReacher-v1", "name": "alr_envs:EpisodicSimpleReacher-v1",
"num_dof": 2, "num_dof": 2,
"num_basis": 5, "num_basis": 5,
"duration": 2, "duration": 2,

View File

@ -1,3 +1,4 @@
from alr_envs.classic_control.simple_reacher import SimpleReacherEnv from alr_envs.classic_control.simple_reacher import SimpleReacherEnv
from alr_envs.classic_control.episodic_simple_reacher import EpisodicSimpleReacherEnv
from alr_envs.classic_control.viapoint_reacher import ViaPointReacher from alr_envs.classic_control.viapoint_reacher import ViaPointReacher
from alr_envs.classic_control.hole_reacher import HoleReacher from alr_envs.classic_control.hole_reacher import HoleReacher

View File

@ -0,0 +1,46 @@
from alr_envs.classic_control.simple_reacher import SimpleReacherEnv
from gym import spaces
import numpy as np
class EpisodicSimpleReacherEnv(SimpleReacherEnv):
def __init__(self, n_links, random_start=True):
super(EpisodicSimpleReacherEnv, self).__init__(n_links, random_start)
# self._goal_pos = None
if random_start:
state_bound = np.hstack([
[np.pi] * self.n_links, # cos
[np.pi] * self.n_links, # sin
[np.inf] * self.n_links, # velocity
])
else:
state_bound = np.empty(0, )
state_bound = np.hstack([
state_bound,
[np.inf] * 2, # x-y coordinates of goal
])
self.observation_space = spaces.Box(low=-state_bound, high=state_bound, shape=state_bound.shape)
@property
def start_pos(self):
return self._start_pos
# @property
# def goal_pos(self):
# return self._goal_pos
def _get_obs(self):
if self.random_start:
theta = self._joint_angle
return np.hstack([
np.cos(theta),
np.sin(theta),
self._angle_velocity,
self._goal,
])
else:
return self._goal

View File

@ -26,7 +26,7 @@ class SimpleReacherEnv(gym.Env):
self.random_start = random_start self.random_start = random_start
self._goal_pos = None self._goal = None
self._joints = None self._joints = None
self._joint_angle = None self._joint_angle = None
@ -53,10 +53,6 @@ class SimpleReacherEnv(gym.Env):
self._steps = 0 self._steps = 0
self.seed() self.seed()
@property
def start_pos(self):
return self._start_pos
def step(self, action: np.ndarray): def step(self, action: np.ndarray):
# action = self._add_action_noise(action) # action = self._add_action_noise(action)
@ -91,8 +87,7 @@ class SimpleReacherEnv(gym.Env):
np.cos(theta), np.cos(theta),
np.sin(theta), np.sin(theta),
self._angle_velocity, self._angle_velocity,
self.end_effector - self._goal_pos, self.end_effector - self._goal,
self._goal_pos,
self._steps self._steps
]) ])
@ -107,7 +102,7 @@ class SimpleReacherEnv(gym.Env):
self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0) self._joints[1:] = self._joints[0] + np.cumsum(x.T, axis=0)
def _get_reward(self, action: np.ndarray): def _get_reward(self, action: np.ndarray):
diff = self.end_effector - self._goal_pos diff = self.end_effector - self._goal
reward_dist = 0 reward_dist = 0
# TODO: Is this the best option # TODO: Is this the best option
@ -135,7 +130,7 @@ class SimpleReacherEnv(gym.Env):
self._update_joints() self._update_joints()
self._steps = 0 self._steps = 0
self._goal_pos = self._get_random_goal() self._goal = self._get_random_goal()
return self._get_obs().copy() return self._get_obs().copy()
def _get_random_goal(self): def _get_random_goal(self):
@ -160,13 +155,13 @@ class SimpleReacherEnv(gym.Env):
plt.figure(self.fig.number) plt.figure(self.fig.number)
plt.cla() plt.cla()
plt.title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal_pos}") plt.title(f"Iteration: {self._steps}, distance: {self.end_effector - self._goal}")
# Arm # Arm
plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k') plt.plot(self._joints[:, 0], self._joints[:, 1], 'ro-', markerfacecolor='k')
# goal # goal
goal_pos = self._goal_pos.T goal_pos = self._goal.T
plt.plot(goal_pos[0], goal_pos[1], 'gx') plt.plot(goal_pos[0], goal_pos[1], 'gx')
# distance between end effector and goal # distance between end effector and goal
plt.plot([self.end_effector[0], goal_pos[0]], [self.end_effector[1], goal_pos[1]], 'g--') plt.plot([self.end_effector[0], goal_pos[0]], [self.end_effector[1], goal_pos[1]], 'g--')

View File

@ -81,12 +81,11 @@ class AlrContextualMpEnvSampler:
repeat = int(np.ceil(n_samples / self.env.num_envs)) repeat = int(np.ceil(n_samples / self.env.num_envs))
vals = defaultdict(list) vals = defaultdict(list)
for i in range(repeat): for i in range(repeat):
obs = self.env.reset() new_contexts = self.env.reset()
new_contexts = obs[-2]
new_samples = dist.sample(new_contexts) new_samples = dist.sample(new_contexts)
obs, reward, done, info = self.env.step(p) obs, reward, done, info = self.env.step(new_samples)
vals['obs'].append(obs) vals['obs'].append(obs)
vals['reward'].append(reward) vals['reward'].append(reward)
vals['done'].append(done) vals['done'].append(done)

View File

@ -9,8 +9,10 @@ from alr_envs.utils.wrapper.mp_wrapper import MPWrapper
class DmpWrapper(MPWrapper): class DmpWrapper(MPWrapper):
def __init__(self, env: gym.Env, num_dof: int, num_basis: int, start_pos: np.ndarray = None, def __init__(self, env: gym.Env, num_dof: int, num_basis: int,
final_pos: np.ndarray = None, duration: int = 1, alpha_phase: float = 2., dt: float = None, # start_pos: np.ndarray = None,
# final_pos: np.ndarray = None,
duration: int = 1, alpha_phase: float = 2., dt: float = None,
learn_goal: bool = False, return_to_start: bool = False, post_traj_time: float = 0., learn_goal: bool = False, return_to_start: bool = False, post_traj_time: float = 0.,
weights_scale: float = 1., goal_scale: float = 1., bandwidth_factor: float = 3., weights_scale: float = 1., goal_scale: float = 1., bandwidth_factor: float = 3.,
policy_type: str = None, render_mode: str = None): policy_type: str = None, render_mode: str = None):
@ -35,26 +37,30 @@ class DmpWrapper(MPWrapper):
self.learn_goal = learn_goal self.learn_goal = learn_goal
dt = env.dt if hasattr(env, "dt") else dt dt = env.dt if hasattr(env, "dt") else dt
assert dt is not None assert dt is not None
start_pos = start_pos if start_pos is not None else env.start_pos if hasattr(env, "start_pos") else None # start_pos = start_pos if start_pos is not None else env.start_pos if hasattr(env, "start_pos") else None
# TODO: assert start_pos is not None # start_pos will be set in initialize, do we need this here? # TODO: assert start_pos is not None # start_pos will be set in initialize, do we need this here?
if learn_goal: # if learn_goal:
# final_pos = np.zeros_like(start_pos) # arbitrary, will be learned # final_pos = np.zeros_like(start_pos) # arbitrary, will be learned
final_pos = np.zeros((1, num_dof)) # arbitrary, will be learned # final_pos = np.zeros((1, num_dof)) # arbitrary, will be learned
else: # else:
final_pos = final_pos if final_pos is not None else start_pos if return_to_start else None # final_pos = final_pos if final_pos is not None else start_pos if return_to_start else None
assert final_pos is not None # assert final_pos is not None
self.t = np.linspace(0, duration, int(duration / dt)) self.t = np.linspace(0, duration, int(duration / dt))
self.goal_scale = goal_scale self.goal_scale = goal_scale
super().__init__(env, num_dof, duration, dt, post_traj_time, policy_type, weights_scale, render_mode, super().__init__(env, num_dof, duration, dt, post_traj_time, policy_type, weights_scale, render_mode,
num_basis=num_basis, start_pos=start_pos, final_pos=final_pos, alpha_phase=alpha_phase, num_basis=num_basis,
# start_pos=start_pos, final_pos=final_pos,
alpha_phase=alpha_phase,
bandwidth_factor=bandwidth_factor) bandwidth_factor=bandwidth_factor)
action_bounds = np.inf * np.ones((np.prod(self.mp.dmp_weights.shape) + (num_dof if learn_goal else 0))) action_bounds = np.inf * np.ones((np.prod(self.mp.dmp_weights.shape) + (num_dof if learn_goal else 0)))
self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32) self.action_space = gym.spaces.Box(low=-action_bounds, high=action_bounds, dtype=np.float32)
def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5, start_pos: np.ndarray = None, def initialize_mp(self, num_dof: int, duration: int, dt: float, num_basis: int = 5,
final_pos: np.ndarray = None, alpha_phase: float = 2., bandwidth_factor: float = 3.): # start_pos: np.ndarray = None,
# final_pos: np.ndarray = None,
alpha_phase: float = 2., bandwidth_factor: float = 3.):
phase_generator = ExpDecayPhaseGenerator(alpha_phase=alpha_phase, duration=duration) phase_generator = ExpDecayPhaseGenerator(alpha_phase=alpha_phase, duration=duration)
basis_generator = DMPBasisGenerator(phase_generator, duration=duration, num_basis=num_basis, basis_generator = DMPBasisGenerator(phase_generator, duration=duration, num_basis=num_basis,
@ -66,12 +72,12 @@ class DmpWrapper(MPWrapper):
# dmp.dmp_start_pos = start_pos.reshape((1, num_dof)) # dmp.dmp_start_pos = start_pos.reshape((1, num_dof))
# in a contextual environment, the start_pos may be not fixed, set in mp_rollout? # in a contextual environment, the start_pos may be not fixed, set in mp_rollout?
# TODO: Should we set start_pos in init at all? It's only used after calling rollout anyway... # TODO: Should we set start_pos in init at all? It's only used after calling rollout anyway...
dmp.dmp_start_pos = start_pos.reshape((1, num_dof)) if start_pos is not None else np.zeros((1, num_dof)) # dmp.dmp_start_pos = start_pos.reshape((1, num_dof)) if start_pos is not None else np.zeros((1, num_dof))
weights = np.zeros((num_basis, num_dof)) # weights = np.zeros((num_basis, num_dof))
goal_pos = np.zeros(num_dof) if self.learn_goal else final_pos # goal_pos = np.zeros(num_dof) if self.learn_goal else final_pos
dmp.set_weights(weights, goal_pos) # dmp.set_weights(weights, goal_pos)
return dmp return dmp
def goal_and_weights(self, params): def goal_and_weights(self, params):
@ -83,7 +89,7 @@ class DmpWrapper(MPWrapper):
params = params[:, :-self.mp.num_dimensions] # [1,num_dof] params = params[:, :-self.mp.num_dimensions] # [1,num_dof]
# weight_matrix = np.reshape(params[:, :-self.num_dof], [self.num_basis, self.num_dof]) # weight_matrix = np.reshape(params[:, :-self.num_dof], [self.num_basis, self.num_dof])
else: else:
goal_pos = self.mp.dmp_goal_pos.flatten() goal_pos = self.env.goal_pos # self.mp.dmp_goal_pos.flatten()
assert goal_pos is not None assert goal_pos is not None
# weight_matrix = np.reshape(params, [self.num_basis, self.num_dof]) # weight_matrix = np.reshape(params, [self.num_basis, self.num_dof])
@ -91,8 +97,8 @@ class DmpWrapper(MPWrapper):
return goal_pos * self.goal_scale, weight_matrix * self.weights_scale return goal_pos * self.goal_scale, weight_matrix * self.weights_scale
def mp_rollout(self, action): def mp_rollout(self, action):
if self.mp.start_pos is None: # if self.mp.start_pos is None:
self.mp.start_pos = self.env.start_pos self.mp.dmp_start_pos = self.env.init_qpos # start_pos
goal_pos, weight_matrix = self.goal_and_weights(action) goal_pos, weight_matrix = self.goal_and_weights(action)
self.mp.set_weights(weight_matrix, goal_pos) self.mp.set_weights(weight_matrix, goal_pos)
return self.mp.reference_trajectory(self.t) return self.mp.reference_trajectory(self.t)

View File

@ -62,7 +62,8 @@ class MPWrapper(gym.Wrapper, ABC):
self.env.configure(context) self.env.configure(context)
def reset(self): def reset(self):
return self.env.reset() obs = self.env.reset()
return obs
def step(self, action: np.ndarray): def step(self, action: np.ndarray):
""" This function generates a trajectory based on a DMP and then does the usual loop over reset and step""" """ This function generates a trajectory based on a DMP and then does the usual loop over reset and step"""

View File

@ -83,5 +83,6 @@ if __name__ == '__main__':
# example_mujoco() # example_mujoco()
# example_dmp() # example_dmp()
# example_async() # example_async()
env = gym.make("alr_envs:HoleReacherDMP-v0", context=0.1) # env = gym.make("alr_envs:HoleReacherDMP-v0", context=0.1)
env = gym.make("alr_envs:SimpleReacherDMP-v1")
print() print()