added black box tests and bug fixes

This commit is contained in:
Fabian 2022-10-21 16:16:49 +02:00
parent 915ffbe928
commit ed645c2fbe
5 changed files with 343 additions and 69 deletions

View File

@ -73,24 +73,30 @@ class BlackBoxWrapper(gym.ObservationWrapper):
return observation.astype(self.observation_space.dtype) return observation.astype(self.observation_space.dtype)
def get_trajectory(self, action: np.ndarray) -> Tuple: def get_trajectory(self, action: np.ndarray) -> Tuple:
duration = self.duration
if self.learn_sub_trajectories:
duration = None
# reset with every new call as we need to set all arguments, such as tau, delay, again.
# If we do not do this, the traj_gen assumes we are continuing the trajectory.
self.traj_gen.reset()
clipped_params = np.clip(action, self.traj_gen_action_space.low, self.traj_gen_action_space.high) clipped_params = np.clip(action, self.traj_gen_action_space.low, self.traj_gen_action_space.high)
self.traj_gen.set_params(clipped_params) self.traj_gen.set_params(clipped_params)
bc_time = np.array(0 if not self.do_replanning else self.current_traj_steps * self.dt) bc_time = np.array(0 if not self.do_replanning else self.current_traj_steps * self.dt)
# TODO we could think about initializing with the previous desired value in order to have a smooth transition # TODO we could think about initializing with the previous desired value in order to have a smooth transition
# at least from the planning point of view. # at least from the planning point of view.
self.traj_gen.set_boundary_conditions(bc_time, self.current_pos, self.current_vel) self.traj_gen.set_boundary_conditions(bc_time, self.current_pos, self.current_vel)
duration = None if self.learn_sub_trajectories else self.duration
self.traj_gen.set_duration(duration, self.dt) self.traj_gen.set_duration(duration, self.dt)
# traj_dict = self.traj_gen.get_trajs(get_pos=True, get_vel=True) # traj_dict = self.traj_gen.get_trajs(get_pos=True, get_vel=True)
trajectory = get_numpy(self.traj_gen.get_traj_pos()) position = get_numpy(self.traj_gen.get_traj_pos())
velocity = get_numpy(self.traj_gen.get_traj_vel()) velocity = get_numpy(self.traj_gen.get_traj_vel())
if self.do_replanning: # if self.do_replanning:
# Remove first part of trajectory as this is already over # # Remove first part of trajectory as this is already over
trajectory = trajectory[self.current_traj_steps:] # position = position[self.current_traj_steps:]
velocity = velocity[self.current_traj_steps:] # velocity = velocity[self.current_traj_steps:]
return trajectory, velocity return position, velocity
def _get_traj_gen_action_space(self): def _get_traj_gen_action_space(self):
"""This function can be used to set up an individual space for the parameters of the traj_gen.""" """This function can be used to set up an individual space for the parameters of the traj_gen."""
@ -125,9 +131,9 @@ class BlackBoxWrapper(gym.ObservationWrapper):
# TODO remove this part, right now only needed for beer pong # TODO remove this part, right now only needed for beer pong
mp_params, env_spec_params = self.env.episode_callback(action, self.traj_gen) mp_params, env_spec_params = self.env.episode_callback(action, self.traj_gen)
trajectory, velocity = self.get_trajectory(mp_params) position, velocity = self.get_trajectory(mp_params)
trajectory_length = len(trajectory) trajectory_length = len(position)
rewards = np.zeros(shape=(trajectory_length,)) rewards = np.zeros(shape=(trajectory_length,))
if self.verbose >= 2: if self.verbose >= 2:
actions = np.zeros(shape=(trajectory_length,) + self.env.action_space.shape) actions = np.zeros(shape=(trajectory_length,) + self.env.action_space.shape)
@ -137,7 +143,7 @@ class BlackBoxWrapper(gym.ObservationWrapper):
infos = dict() infos = dict()
done = False done = False
for t, (pos, vel) in enumerate(zip(trajectory, velocity)): for t, (pos, vel) in enumerate(zip(position, velocity)):
step_action = self.tracking_controller.get_action(pos, vel, self.current_pos, self.current_vel) step_action = self.tracking_controller.get_action(pos, vel, self.current_pos, self.current_vel)
c_action = np.clip(step_action, self.env.action_space.low, self.env.action_space.high) c_action = np.clip(step_action, self.env.action_space.low, self.env.action_space.high)
obs, c_reward, done, info = self.env.step(c_action) obs, c_reward, done, info = self.env.step(c_action)
@ -163,7 +169,7 @@ class BlackBoxWrapper(gym.ObservationWrapper):
self.current_traj_steps += t + 1 self.current_traj_steps += t + 1
if self.verbose >= 2: if self.verbose >= 2:
infos['positions'] = trajectory infos['positions'] = position
infos['velocities'] = velocity infos['velocities'] = velocity
infos['step_actions'] = actions[:t + 1] infos['step_actions'] = actions[:t + 1]
infos['step_observations'] = observations[:t + 1] infos['step_observations'] = observations[:t + 1]
@ -180,4 +186,5 @@ class BlackBoxWrapper(gym.ObservationWrapper):
def reset(self, *, seed: Optional[int] = None, return_info: bool = False, options: Optional[dict] = None): def reset(self, *, seed: Optional[int] = None, return_info: bool = False, options: Optional[dict] = None):
self.current_traj_steps = 0 self.current_traj_steps = 0
self.traj_gen.reset()
return super(BlackBoxWrapper, self).reset() return super(BlackBoxWrapper, self).reset()

View File

@ -32,7 +32,7 @@ class MPWrapper(BaseMetaworldMPWrapper):
# Current observation # Current observation
[False] * 3, # end-effector position [False] * 3, # end-effector position
[False] * 1, # normalized gripper open distance [False] * 1, # normalized gripper open distance
[False] * 3, # main object position [True] * 3, # main object position
[False] * 4, # main object quaternion [False] * 4, # main object quaternion
[False] * 3, # secondary object position [False] * 3, # secondary object position
[False] * 4, # secondary object quaternion [False] * 4, # secondary object quaternion

View File

@ -166,6 +166,15 @@ def make_bb(
# We have to learn the length when learning sub_trajectories trajectories # We have to learn the length when learning sub_trajectories trajectories
phase_kwargs['learn_tau'] = True phase_kwargs['learn_tau'] = True
# set tau bounds to minimum of two env steps otherwise computing the velocity is not possible.
# maximum is full duration of one episode.
if phase_kwargs.get('learn_tau'):
phase_kwargs["tau_bound"] = [env.dt * 2, black_box_kwargs['duration']]
# Max delay is full duration minus two steps due to above reason
if phase_kwargs.get('learn_delay'):
phase_kwargs["delay_bound"] = [0, black_box_kwargs['duration'] - env.dt * 2]
phase_gen = get_phase_generator(**phase_kwargs) phase_gen = get_phase_generator(**phase_kwargs)
basis_gen = get_basis_generator(phase_generator=phase_gen, **basis_kwargs) basis_gen = get_basis_generator(phase_generator=phase_gen, **basis_kwargs)
controller = get_controller(**controller_kwargs) controller = get_controller(**controller_kwargs)

View File

@ -25,7 +25,7 @@ class Object(object):
class ToyEnv(gym.Env): class ToyEnv(gym.Env):
observation_space = gym.spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float64) observation_space = gym.spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float64)
action_space = gym.spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float64) action_space = gym.spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float64)
dt = 0.01 dt = 0.02
def __init__(self, a: int = 0, b: float = 0.0, c: list = [], d: dict = {}, e: Object = Object()): def __init__(self, a: int = 0, b: float = 0.0, c: list = [], d: dict = {}, e: Object = Object()):
self.a, self.b, self.c, self.d, self.e = a, b, c, d, e self.a, self.b, self.c, self.d, self.e = a, b, c, d, e
@ -49,7 +49,7 @@ class ToyWrapper(RawInterfaceWrapper):
@property @property
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]: def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
return np.ones(self.action_space.shape) return np.zeros(self.action_space.shape)
@pytest.fixture(scope="session", autouse=True) @pytest.fixture(scope="session", autouse=True)
@ -67,74 +67,81 @@ def test_missing_wrapper(env_id: str):
fancy_gym.make_bb(env_id, [], {}, {}, {}, {}, {}) fancy_gym.make_bb(env_id, [], {}, {}, {}, {}, {})
def test_missing_local_state(): @pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
def test_missing_local_state(mp_type: str):
env = fancy_gym.make_bb('toy-v0', [RawInterfaceWrapper], {}, env = fancy_gym.make_bb('toy-v0', [RawInterfaceWrapper], {},
{'trajectory_generator_type': 'promp'}, {'trajectory_generator_type': mp_type},
{'controller_type': 'motor'}, {'controller_type': 'motor'},
{'phase_generator_type': 'linear'}, {'phase_generator_type': 'exp'},
{'basis_generator_type': 'rbf'}) {'basis_generator_type': 'rbf'})
env.reset() env.reset()
with pytest.raises(NotImplementedError): with pytest.raises(NotImplementedError):
env.step(env.action_space.sample()) env.step(env.action_space.sample())
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
@pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS)) @pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS))
@pytest.mark.parametrize('verbose', [1, 2]) @pytest.mark.parametrize('verbose', [1, 2])
def test_verbosity(env_wrap: Tuple[str, Type[RawInterfaceWrapper]], verbose: int): def test_verbosity(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWrapper]], verbose: int):
env_id, wrapper_class = env_wrap env_id, wrapper_class = env_wrap
env = fancy_gym.make_bb(env_id, [wrapper_class], {}, env = fancy_gym.make_bb(env_id, [wrapper_class], {'verbose': verbose},
{'trajectory_generator_type': 'promp'}, {'trajectory_generator_type': mp_type},
{'controller_type': 'motor'}, {'controller_type': 'motor'},
{'phase_generator_type': 'linear'}, {'phase_generator_type': 'exp'},
{'basis_generator_type': 'rbf'}) {'basis_generator_type': 'rbf'})
env.reset() env.reset()
info_keys = env.step(env.action_space.sample())[3].keys() info_keys = list(env.step(env.action_space.sample())[3].keys())
env_step = fancy_gym.make(env_id, SEED) env_step = fancy_gym.make(env_id, SEED)
env_step.reset() env_step.reset()
info_keys_step = env_step.step(env_step.action_space.sample())[3].keys() info_keys_step = env_step.step(env_step.action_space.sample())[3].keys()
assert info_keys_step in info_keys assert all(e in info_keys for e in info_keys_step)
assert 'trajectory_length' in info_keys assert 'trajectory_length' in info_keys
if verbose >= 2: if verbose >= 2:
mp_keys = ['position', 'velocities', 'step_actions', 'step_observations', 'step_rewards'] mp_keys = ['positions', 'velocities', 'step_actions', 'step_observations', 'step_rewards']
assert mp_keys in info_keys assert all(e in info_keys for e in mp_keys)
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
@pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS)) @pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS))
def test_length(env_wrap: Tuple[str, Type[RawInterfaceWrapper]]): def test_length(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWrapper]]):
env_id, wrapper_class = env_wrap env_id, wrapper_class = env_wrap
env = fancy_gym.make_bb(env_id, [wrapper_class], {}, env = fancy_gym.make_bb(env_id, [wrapper_class], {},
{'trajectory_generator_type': 'promp'}, {'trajectory_generator_type': mp_type},
{'controller_type': 'motor'}, {'controller_type': 'motor'},
{'phase_generator_type': 'linear'}, {'phase_generator_type': 'exp'},
{'basis_generator_type': 'rbf'}) {'basis_generator_type': 'rbf'})
for _ in range(5):
env.reset() env.reset()
length = env.step(env.action_space.sample())[3]['trajectory_length'] length = env.step(env.action_space.sample())[3]['trajectory_length']
assert length == env.spec.max_episode_steps assert length == env.spec.max_episode_steps
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
@pytest.mark.parametrize('reward_aggregation', [np.sum, np.mean, np.median, lambda x: np.mean(x[::2])]) @pytest.mark.parametrize('reward_aggregation', [np.sum, np.mean, np.median, lambda x: np.mean(x[::2])])
def test_aggregation(reward_aggregation: callable): def test_aggregation(mp_type: str, reward_aggregation: callable):
env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {'reward_aggregation': reward_aggregation}, env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {'reward_aggregation': reward_aggregation},
{'trajectory_generator_type': 'promp'}, {'trajectory_generator_type': mp_type},
{'controller_type': 'motor'}, {'controller_type': 'motor'},
{'phase_generator_type': 'linear'}, {'phase_generator_type': 'exp'},
{'basis_generator_type': 'rbf'}) {'basis_generator_type': 'rbf'})
env.reset() env.reset()
# ToyEnv only returns 1 as reward # ToyEnv only returns 1 as reward
assert env.step(env.action_space.sample())[1] == reward_aggregation(np.ones(50, )) assert env.step(env.action_space.sample())[1] == reward_aggregation(np.ones(50, ))
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
@pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS)) @pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS))
def test_context_space(env_wrap: Tuple[str, Type[RawInterfaceWrapper]]): def test_context_space(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWrapper]]):
env_id, wrapper_class = env_wrap env_id, wrapper_class = env_wrap
env = fancy_gym.make_bb(env_id, [wrapper_class], {}, env = fancy_gym.make_bb(env_id, [wrapper_class], {},
{'trajectory_generator_type': 'promp'}, {'trajectory_generator_type': mp_type},
{'controller_type': 'motor'}, {'controller_type': 'motor'},
{'phase_generator_type': 'linear'}, {'phase_generator_type': 'exp'},
{'basis_generator_type': 'rbf'}) {'basis_generator_type': 'rbf'})
# check if observation space matches with the specified mask values which are true # check if observation space matches with the specified mask values which are true
env_step = fancy_gym.make(env_id, SEED) env_step = fancy_gym.make(env_id, SEED)
@ -142,36 +149,42 @@ def test_context_space(env_wrap: Tuple[str, Type[RawInterfaceWrapper]]):
assert env.observation_space.shape == wrapper.context_mask[wrapper.context_mask].shape assert env.observation_space.shape == wrapper.context_mask[wrapper.context_mask].shape
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
@pytest.mark.parametrize('num_dof', [0, 1, 2, 5]) @pytest.mark.parametrize('num_dof', [0, 1, 2, 5])
@pytest.mark.parametrize('num_basis', [0, 1, 2, 5]) @pytest.mark.parametrize('num_basis', [0, 1, 2, 5])
@pytest.mark.parametrize('learn_tau', [True, False]) @pytest.mark.parametrize('learn_tau', [True, False])
@pytest.mark.parametrize('learn_delay', [True, False]) @pytest.mark.parametrize('learn_delay', [True, False])
def test_action_space(num_dof: int, num_basis: int, learn_tau: bool, learn_delay: bool): def test_action_space(mp_type: str, num_dof: int, num_basis: int, learn_tau: bool, learn_delay: bool):
env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {}, env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {},
{'trajectory_generator_type': 'promp', {'trajectory_generator_type': mp_type,
'action_dim': num_dof 'action_dim': num_dof
}, },
{'controller_type': 'motor'}, {'controller_type': 'motor'},
{'phase_generator_type': 'linear', {'phase_generator_type': 'exp',
'learn_tau': learn_tau, 'learn_tau': learn_tau,
'learn_delay': learn_delay 'learn_delay': learn_delay
}, },
{'basis_generator_type': 'rbf', {'basis_generator_type': 'rbf',
'num_basis': num_basis 'num_basis': num_basis
}) })
assert env.action_space.shape[0] == num_dof * num_basis + int(learn_tau) + int(learn_delay)
base_dims = num_dof * num_basis
additional_dims = num_dof if mp_type == 'dmp' else 0
traj_modification_dims = int(learn_tau) + int(learn_delay)
assert env.action_space.shape[0] == base_dims + traj_modification_dims + additional_dims
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
@pytest.mark.parametrize('a', [1]) @pytest.mark.parametrize('a', [1])
@pytest.mark.parametrize('b', [1.0]) @pytest.mark.parametrize('b', [1.0])
@pytest.mark.parametrize('c', [[1], [1.0], ['str'], [{'a': 'b'}], [np.ones(3, )]]) @pytest.mark.parametrize('c', [[1], [1.0], ['str'], [{'a': 'b'}], [np.ones(3, )]])
@pytest.mark.parametrize('d', [{'a': 1}, {1: 2.0}, {'a': [1.0]}, {'a': np.ones(3, )}, {'a': {'a': 'b'}}]) @pytest.mark.parametrize('d', [{'a': 1}, {1: 2.0}, {'a': [1.0]}, {'a': np.ones(3, )}, {'a': {'a': 'b'}}])
@pytest.mark.parametrize('e', [Object()]) @pytest.mark.parametrize('e', [Object()])
def test_change_env_kwargs(a: int, b: float, c: list, d: dict, e: Object): def test_change_env_kwargs(mp_type: str, a: int, b: float, c: list, d: dict, e: Object):
env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {}, env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {},
{'trajectory_generator_type': 'promp'}, {'trajectory_generator_type': mp_type},
{'controller_type': 'motor'}, {'controller_type': 'motor'},
{'phase_generator_type': 'linear'}, {'phase_generator_type': 'exp'},
{'basis_generator_type': 'rbf'}, {'basis_generator_type': 'rbf'},
a=a, b=b, c=c, d=d, e=e a=a, b=b, c=c, d=d, e=e
) )
@ -183,33 +196,135 @@ def test_change_env_kwargs(a: int, b: float, c: list, d: dict, e: Object):
assert e is env.e assert e is env.e
@pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS)) @pytest.mark.parametrize('mp_type', ['promp'])
@pytest.mark.parametrize('add_time_aware_wrapper_before', [True, False]) @pytest.mark.parametrize('tau', [0.25, 0.5, 0.75, 1])
def test_learn_sub_trajectories(env_wrap: Tuple[str, Type[RawInterfaceWrapper]], add_time_aware_wrapper_before: bool): def test_learn_tau(mp_type: str, tau: float):
env_id, wrapper_class = env_wrap env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {'verbose': 2},
env_step = TimeAwareObservation(fancy_gym.make(env_id, SEED)) {'trajectory_generator_type': mp_type,
wrappers = [wrapper_class] },
# has time aware wrapper
if add_time_aware_wrapper_before:
wrappers += [TimeAwareObservation]
env = fancy_gym.make_bb(env_id, [wrapper_class], {'learn_sub_trajectories': True},
{'trajectory_generator_type': 'promp'},
{'controller_type': 'motor'}, {'controller_type': 'motor'},
{'phase_generator_type': 'linear'}, {'phase_generator_type': 'linear',
{'basis_generator_type': 'rbf'}) 'learn_tau': True,
'learn_delay': False
assert env.learn_sub_trajectories },
assert env.traj_gen.learn_tau {'basis_generator_type': 'rbf',
assert env.observation_space == env_step.observation_space }, seed=SEED)
d = True
for i in range(5):
if d:
env.reset() env.reset()
action = env.action_space.sample() action = env.action_space.sample()
action[0] = tau
obs, r, d, info = env.step(action) obs, r, d, info = env.step(action)
length = info['trajectory_length'] length = info['trajectory_length']
assert length == env.spec.max_episode_steps
tau_time_steps = int(np.round(tau / env.dt))
pos = info['positions'].flatten()
vel = info['velocities'].flatten()
# Check end is all same (only true for linear basis)
assert np.all(pos[tau_time_steps:] == pos[-1])
assert np.all(vel[tau_time_steps:] == vel[-1])
# Check active trajectory section is different to end values
assert np.all(pos[:tau_time_steps - 1] != pos[-1])
assert np.all(vel[:tau_time_steps - 2] != vel[-1])
@pytest.mark.parametrize('mp_type', ['promp'])
@pytest.mark.parametrize('delay', [0, 0.25, 0.5, 0.75])
def test_learn_delay(mp_type: str, delay: float):
env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {'verbose': 2},
{'trajectory_generator_type': mp_type,
},
{'controller_type': 'motor'},
{'phase_generator_type': 'linear',
'learn_tau': False,
'learn_delay': True
},
{'basis_generator_type': 'rbf',
}, seed=SEED)
d = True
for i in range(5):
if d:
env.reset()
action = env.action_space.sample()
action[0] = delay
obs, r, d, info = env.step(action)
length = info['trajectory_length']
assert length == env.spec.max_episode_steps
delay_time_steps = int(np.round(delay / env.dt))
pos = info['positions'].flatten()
vel = info['velocities'].flatten()
# Check beginning is all same (only true for linear basis)
assert np.all(pos[:max(1, delay_time_steps - 1)] == pos[0])
assert np.all(vel[:max(1, delay_time_steps - 2)] == vel[0])
# Check active trajectory section is different to beginning values
assert np.all(pos[max(1, delay_time_steps):] != pos[0])
assert np.all(vel[max(1, delay_time_steps)] != vel[0])
@pytest.mark.parametrize('mp_type', ['promp'])
@pytest.mark.parametrize('tau', [0.25, 0.5, 0.75, 1])
@pytest.mark.parametrize('delay', [0.25, 0.5, 0.75, 1])
def test_learn_tau_and_delay(mp_type: str, tau: float, delay: float):
env = fancy_gym.make_bb('toy-v0', [ToyWrapper], {'verbose': 2},
{'trajectory_generator_type': mp_type,
},
{'controller_type': 'motor'},
{'phase_generator_type': 'linear',
'learn_tau': True,
'learn_delay': True
},
{'basis_generator_type': 'rbf',
}, seed=SEED)
if env.spec.max_episode_steps * env.dt < delay + tau:
return
d = True
for i in range(5):
if d:
env.reset()
action = env.action_space.sample()
action[0] = tau
action[1] = delay
obs, r, d, info = env.step(action)
length = info['trajectory_length']
assert length == env.spec.max_episode_steps
tau_time_steps = int(np.round(tau / env.dt))
delay_time_steps = int(np.round(delay / env.dt))
joint_time_steps = delay_time_steps + tau_time_steps
pos = info['positions'].flatten()
vel = info['velocities'].flatten()
# Check end is all same (only true for linear basis)
assert np.all(pos[joint_time_steps:] == pos[-1])
assert np.all(vel[joint_time_steps:] == vel[-1])
# Check beginning is all same (only true for linear basis)
assert np.all(pos[:delay_time_steps - 1] == pos[0])
assert np.all(vel[:delay_time_steps - 2] == vel[0])
# Check active trajectory section is different to beginning and end values
active_pos = pos[delay_time_steps: joint_time_steps - 1]
active_vel = vel[delay_time_steps: joint_time_steps - 2]
assert np.all(active_pos != pos[-1]) and np.all(active_pos != pos[0])
assert np.all(active_vel != vel[-1]) and np.all(active_vel != vel[0])
factor = 1 / env.dt
assert np.allclose(length * env.dt, np.round(factor * action[0]) / factor)
assert np.allclose(length * env.dt, np.round(factor * env.traj_gen.tau.numpy()) / factor)

View File

@ -0,0 +1,143 @@
from itertools import chain
from typing import Tuple, Type, Union, Optional
import gym
import numpy as np
import pytest
from gym import register
from gym.core import ActType, ObsType
import fancy_gym
from fancy_gym.black_box.raw_interface_wrapper import RawInterfaceWrapper
from fancy_gym.utils.time_aware_observation import TimeAwareObservation
SEED = 1
ENV_IDS = ['Reacher5d-v0', 'dmc:ball_in_cup-catch', 'metaworld:reach-v2', 'Reacher-v2']
WRAPPERS = [fancy_gym.envs.mujoco.reacher.MPWrapper, fancy_gym.dmc.suite.ball_in_cup.MPWrapper,
fancy_gym.meta.goal_object_change_mp_wrapper.MPWrapper, fancy_gym.open_ai.mujoco.reacher_v2.MPWrapper]
ALL_MP_ENVS = chain(*fancy_gym.ALL_MOVEMENT_PRIMITIVE_ENVIRONMENTS.values())
class ToyEnv(gym.Env):
observation_space = gym.spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float64)
action_space = gym.spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float64)
dt = 0.02
def reset(self, *, seed: Optional[int] = None, return_info: bool = False,
options: Optional[dict] = None) -> Union[ObsType, Tuple[ObsType, dict]]:
return np.array([-1])
def step(self, action: ActType) -> Tuple[ObsType, float, bool, dict]:
return np.array([-1]), 1, False, {}
def render(self, mode="human"):
pass
class ToyWrapper(RawInterfaceWrapper):
@property
def current_pos(self) -> Union[float, int, np.ndarray, Tuple]:
return np.ones(self.action_space.shape)
@property
def current_vel(self) -> Union[float, int, np.ndarray, Tuple]:
return np.zeros(self.action_space.shape)
@pytest.fixture(scope="session", autouse=True)
def setup():
register(
id=f'toy-v0',
entry_point='test.test_black_box:ToyEnv',
max_episode_steps=50,
)
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
@pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS))
@pytest.mark.parametrize('add_time_aware_wrapper_before', [True, False])
def test_learn_sub_trajectories(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWrapper]],
add_time_aware_wrapper_before: bool):
env_id, wrapper_class = env_wrap
env_step = TimeAwareObservation(fancy_gym.make(env_id, SEED))
wrappers = [wrapper_class]
# has time aware wrapper
if add_time_aware_wrapper_before:
wrappers += [TimeAwareObservation]
env = fancy_gym.make_bb(env_id, [wrapper_class], {'learn_sub_trajectories': True, 'verbose': 2},
{'trajectory_generator_type': mp_type},
{'controller_type': 'motor'},
{'phase_generator_type': 'exp'},
{'basis_generator_type': 'rbf'}, seed=SEED)
assert env.learn_sub_trajectories
assert env.traj_gen.learn_tau
# This also verifies we are not adding the TimeAwareObservationWrapper twice
assert env.observation_space == env_step.observation_space
d = True
for i in range(25):
if d:
env.reset()
action = env.action_space.sample()
obs, r, d, info = env.step(action)
length = info['trajectory_length']
if not d:
assert length == np.round(action[0] / env.dt)
assert length == np.round(env.traj_gen.tau.numpy() / env.dt)
else:
# When done trajectory could be shorter due to termination.
assert length <= np.round(action[0] / env.dt)
assert length <= np.round(env.traj_gen.tau.numpy() / env.dt)
@pytest.mark.parametrize('mp_type', ['promp', 'dmp'])
@pytest.mark.parametrize('env_wrap', zip(ENV_IDS, WRAPPERS))
@pytest.mark.parametrize('add_time_aware_wrapper_before', [True, False])
@pytest.mark.parametrize('replanning_time', [10, 100, 1000])
def test_replanning_time(mp_type: str, env_wrap: Tuple[str, Type[RawInterfaceWrapper]],
add_time_aware_wrapper_before: bool, replanning_time: int):
env_id, wrapper_class = env_wrap
env_step = TimeAwareObservation(fancy_gym.make(env_id, SEED))
wrappers = [wrapper_class]
# has time aware wrapper
if add_time_aware_wrapper_before:
wrappers += [TimeAwareObservation]
replanning_schedule = lambda c_pos, c_vel, obs, c_action, t: t % replanning_time == 0
env = fancy_gym.make_bb(env_id, [wrapper_class], {'replanning_schedule': replanning_schedule, 'verbose': 2},
{'trajectory_generator_type': mp_type},
{'controller_type': 'motor'},
{'phase_generator_type': 'exp'},
{'basis_generator_type': 'rbf'}, seed=SEED)
assert env.do_replanning
assert env.replanning_schedule
# This also verifies we are not adding the TimeAwareObservationWrapper twice
assert env.observation_space == env_step.observation_space
env.reset()
episode_steps = env_step.spec.max_episode_steps // replanning_time
# Make 3 episodes, total steps depend on the replanning steps
for i in range(3 * episode_steps):
action = env.action_space.sample()
obs, r, d, info = env.step(action)
length = info['trajectory_length']
if d:
# Check if number of steps until termination match the replanning interval
print(d, (i + 1), episode_steps)
assert (i + 1) % episode_steps == 0
env.reset()
assert replanning_schedule(None, None, None, None, length)