metastable-baselines/test.py

159 lines
5.4 KiB
Python
Raw Normal View History

#!/usr/bin/python3
import gym
import time
import datetime
from stable_baselines3.common.evaluation import evaluate_policy
2022-07-19 10:08:47 +02:00
from metastable_baselines.distributions.distributions import get_legal_setups
2022-07-13 19:51:33 +02:00
from metastable_baselines.ppo import PPO
2022-07-19 10:08:47 +02:00
from metastable_baselines.sac import SAC
from metastable_baselines.ppo.policies import MlpPolicy as MlpPolicyPPO
from metastable_baselines.sac.policies import MlpPolicy as MlpPolicySAC
from metastable_projections.projections import BaseProjectionLayer, FrobeniusProjectionLayer, WassersteinProjectionLayer, KLProjectionLayer
import columbus
2022-06-19 15:50:54 +02:00
from metastable_baselines.distributions import Strength, ParametrizationType, EnforcePositiveType, ProbSquashingType
2022-08-28 12:07:19 +02:00
import torch as th
2022-06-22 13:00:40 +02:00
root_path = '.'
2022-06-25 14:50:19 +02:00
2022-07-19 10:08:47 +02:00
def main(env_name='ColumbusCandyland_Aux10-v0', timesteps=1_000_000, showRes=True, saveModel=True, n_eval_episodes=0):
env = gym.make(env_name)
2022-09-03 13:08:31 +02:00
use_sde = True
2022-08-28 12:07:19 +02:00
# th.autograd.set_detect_anomaly(True)
2022-11-07 13:23:55 +01:00
#sac = SAC(
# MlpPolicySAC,
# env,
2022-08-28 20:48:02 +02:00
# KLProjectionLayer(trust_region_coeff=0.01),
2022-09-03 13:08:31 +02:00
#projection=WassersteinProjectionLayer(trust_region_coeff=0.01),
2022-11-07 13:23:55 +01:00
# policy_kwargs={'dist_kwargs': {'neural_strength': Strength.NONE, 'cov_strength': Strength.DIAG, 'parameterization_type':
# ParametrizationType.NONE, 'enforce_positive_type': EnforcePositiveType.ABS, 'prob_squashing_type': ProbSquashingType.NONE}},
# verbose=0,
# tensorboard_log=root_path+"/logs_tb/" +
# env_name+"/sac"+(['', '_sde'][use_sde])+"/",
# learning_rate=3e-4, # 3e-4,
# gamma=0.99,
2022-09-03 13:08:31 +02:00
#gae_lambda=0.95,
#normalize_advantage=True,
#ent_coef=0.1, # 0.1
#vf_coef=0.5,
2022-11-07 13:23:55 +01:00
# use_sde=use_sde, # False
# sde_sample_freq=8,
2022-09-03 13:08:31 +02:00
#clip_range=None # 1 # 0.2,
2022-11-07 13:23:55 +01:00
#)
trl_frob = PPO(
MlpPolicyPPO,
env,
projection=FrobeniusProjectionLayer(),
verbose=0,
tensorboard_log=root_path+"/logs_tb/"+env_name +
"/trl_frob"+(['', '_sde'][use_sde])+"/",
learning_rate=3e-4,
gamma=0.99,
gae_lambda=0.95,
normalize_advantage=True,
ent_coef=0.03, # 0.1
vf_coef=0.5,
use_sde=use_sde,
clip_range=2, # 0.2
2022-06-25 14:50:19 +02:00
)
2022-11-07 13:23:55 +01:00
#print('SAC:')
#testModel(sac, timesteps, showRes,
# saveModel, n_eval_episodes)
2022-11-07 13:23:55 +01:00
print('TRL_frob:')
testModel(trl_frob, timesteps, showRes,
saveModel, n_eval_episodes)
2022-08-06 14:37:30 +02:00
def full(env_name='ColumbusCandyland_Aux10-v0', timesteps=200_000, saveModel=True, n_eval_episodes=4):
2022-07-19 10:08:47 +02:00
env = gym.make(env_name)
use_sde = False
2022-08-06 14:37:30 +02:00
skip_num = 4 # 10 (/ start at index)
sac = False
2022-07-19 10:08:47 +02:00
Model = [PPO, SAC][sac]
Policy = [MlpPolicyPPO, MlpPolicySAC][sac]
2022-08-06 14:37:30 +02:00
projection = FrobeniusProjectionLayer()
#projection = BaseProjectionLayer()
2022-07-19 10:08:47 +02:00
gen = enumerate(get_legal_setups(
allowedEPTs=[EnforcePositiveType.SOFTPLUS, EnforcePositiveType.ABS]))
for i in range(skip_num):
gen.__next__()
for i, setup in gen:
(ps, cs, ept, pt) = setup
print('{'+str(i)+'}: '+str(setup))
model = Model(
Policy,
env,
2022-08-06 14:37:30 +02:00
projection=projection,
2022-07-19 10:08:47 +02:00
policy_kwargs={'dist_kwargs': {'neural_strength': ps, 'cov_strength': cs, 'parameterization_type':
2022-08-06 14:37:30 +02:00
pt, 'enforce_positive_type': ept, 'prob_squashing_type': ProbSquashingType.TANH}},
2022-07-19 10:08:47 +02:00
verbose=0,
tensorboard_log=root_path+"/logs_tb/" +
2022-08-06 14:37:30 +02:00
env_name+"/"+['ppo', 'sac'][sac]+"_" + 'TANH_' +
2022-07-19 10:08:47 +02:00
("_".join([str(s) for s in setup])+['', '_sde'][use_sde])+"/",
2022-08-06 14:37:30 +02:00
learning_rate=3e-4,
gamma=0.99,
gae_lambda=0.95,
normalize_advantage=True,
ent_coef=0.02, # 0.1
vf_coef=0.5,
2022-07-19 10:08:47 +02:00
use_sde=use_sde, # False
2022-08-06 14:37:30 +02:00
clip_range=1 # 0.2,
2022-07-19 10:08:47 +02:00
)
testModel(model, timesteps, False,
saveModel, n_eval_episodes)
2022-06-25 14:50:19 +02:00
def testModel(model, timesteps, showRes=False, saveModel=False, n_eval_episodes=16):
env = model.get_env()
try:
model.learn(timesteps)
except KeyboardInterrupt:
print('[!] Training Terminated')
pass
if saveModel:
now = datetime.datetime.now().strftime('%d.%m.%Y-%H:%M')
2022-06-25 14:50:19 +02:00
loc = root_path+'/models/' + \
model.tensorboard_log.replace(
root_path+'/logs_tb/', '').replace('/', '_')+now+'.zip'
2022-06-22 13:00:40 +02:00
model.save(loc)
2022-06-19 20:34:04 +02:00
if n_eval_episodes:
2022-06-25 14:50:19 +02:00
mean_reward, std_reward = evaluate_policy(
model, env, n_eval_episodes=n_eval_episodes, deterministic=False)
print('Reward: '+str(round(mean_reward, 3)) +
'±'+str(round(std_reward, 2)))
if showRes:
2022-06-19 20:34:04 +02:00
input('<ready?>')
obs = env.reset()
# Evaluate the agent
episode_reward = 0
2022-06-22 13:12:55 +02:00
while True:
2022-06-25 14:50:19 +02:00
time.sleep(1/30)
action, _ = model.predict(obs, deterministic=False)
obs, reward, done, info = env.step(action)
env.render()
episode_reward += reward
if done:
# print("Reward:", episode_reward)
episode_reward = 0.0
obs = env.reset()
env.reset()
2022-06-25 14:50:19 +02:00
if __name__ == '__main__':
2022-08-22 15:05:42 +02:00
main('LunarLanderContinuous-v2')
2022-06-30 20:40:30 +02:00
# main('ColumbusJustState-v0')
2022-07-19 10:08:47 +02:00
# main('ColumbusStateWithBarriers-v0')
# full('ColumbusEasierObstacles-v0')
2022-08-22 15:05:42 +02:00
# main('ColumbusSingle-v0')
2022-08-06 14:37:30 +02:00
# full('LunarLanderContinuous-v2')