2020-07-01 07:12:06 +02:00
|
|
|
"""Maze tasks that are defined by their map, termination condition, and goals.
|
|
|
|
"""
|
|
|
|
|
2020-06-16 06:47:40 +02:00
|
|
|
from abc import ABC, abstractmethod
|
2020-09-26 11:37:20 +02:00
|
|
|
from typing import Dict, List, NamedTuple, Optional, Tuple, Type
|
2020-06-16 06:47:40 +02:00
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from mujoco_maze.maze_env_utils import MazeCell
|
|
|
|
|
2020-06-22 18:13:05 +02:00
|
|
|
|
2020-06-30 09:33:07 +02:00
|
|
|
class Rgb(NamedTuple):
|
|
|
|
red: float
|
|
|
|
green: float
|
|
|
|
blue: float
|
|
|
|
|
|
|
|
|
|
|
|
RED = Rgb(0.7, 0.1, 0.1)
|
|
|
|
GREEN = Rgb(0.1, 0.7, 0.1)
|
|
|
|
BLUE = Rgb(0.1, 0.1, 0.7)
|
2020-06-22 18:13:05 +02:00
|
|
|
|
2020-06-16 06:47:40 +02:00
|
|
|
|
|
|
|
class MazeGoal:
|
|
|
|
THRESHOLD: float = 0.6
|
|
|
|
|
2020-06-22 18:13:05 +02:00
|
|
|
def __init__(
|
|
|
|
self, pos: np.ndarray, reward_scale: float = 1.0, rgb: Rgb = RED
|
|
|
|
) -> None:
|
|
|
|
assert 0.0 <= reward_scale <= 1.0
|
|
|
|
self.pos = pos
|
|
|
|
self.dim = pos.shape[0]
|
2020-06-16 06:47:40 +02:00
|
|
|
self.reward_scale = reward_scale
|
2020-06-22 18:13:05 +02:00
|
|
|
self.rgb = rgb
|
|
|
|
|
|
|
|
def rbga_str(self) -> str:
|
|
|
|
r, g, b = self.rgb
|
|
|
|
return f"{r} {g} {b} 1"
|
2020-06-16 06:47:40 +02:00
|
|
|
|
|
|
|
def neighbor(self, obs: np.ndarray) -> float:
|
2020-06-22 18:13:05 +02:00
|
|
|
return np.linalg.norm(obs[: self.dim] - self.pos) <= self.THRESHOLD
|
2020-06-16 06:47:40 +02:00
|
|
|
|
|
|
|
def euc_dist(self, obs: np.ndarray) -> float:
|
2020-06-22 18:13:05 +02:00
|
|
|
return np.sum(np.square(obs[: self.dim] - self.pos)) ** 0.5
|
2020-06-16 06:47:40 +02:00
|
|
|
|
|
|
|
|
2020-06-30 15:42:22 +02:00
|
|
|
class Scaling(NamedTuple):
|
|
|
|
ant: float
|
|
|
|
point: float
|
2020-09-24 16:40:33 +02:00
|
|
|
swimmer: float
|
2020-06-30 15:42:22 +02:00
|
|
|
|
|
|
|
|
2020-06-16 06:47:40 +02:00
|
|
|
class MazeTask(ABC):
|
|
|
|
REWARD_THRESHOLD: float
|
2020-09-26 11:37:20 +02:00
|
|
|
PENALTY: Optional[float] = None
|
2020-09-24 16:40:33 +02:00
|
|
|
MAZE_SIZE_SCALING: Scaling = Scaling(8.0, 4.0, 4.0)
|
2020-07-05 17:52:28 +02:00
|
|
|
INNER_REWARD_SCALING: float = 0.01
|
2020-09-21 06:27:41 +02:00
|
|
|
TOP_DOWN_VIEW: bool = False
|
2020-06-30 15:42:22 +02:00
|
|
|
OBSERVE_BLOCKS: bool = False
|
|
|
|
PUT_SPIN_NEAR_AGENT: bool = False
|
2020-06-16 06:47:40 +02:00
|
|
|
|
2020-06-22 18:13:05 +02:00
|
|
|
def __init__(self, scale: float) -> None:
|
2020-06-16 06:47:40 +02:00
|
|
|
self.goals = []
|
2020-07-05 17:52:28 +02:00
|
|
|
self.scale = scale
|
2020-06-16 06:47:40 +02:00
|
|
|
|
2020-06-22 18:13:05 +02:00
|
|
|
def sample_goals(self) -> bool:
|
|
|
|
return False
|
2020-06-16 06:47:40 +02:00
|
|
|
|
2020-06-22 18:13:05 +02:00
|
|
|
def termination(self, obs: np.ndarray) -> bool:
|
|
|
|
for goal in self.goals:
|
|
|
|
if goal.neighbor(obs):
|
|
|
|
return True
|
|
|
|
return False
|
2020-06-16 06:47:40 +02:00
|
|
|
|
|
|
|
@abstractmethod
|
2020-06-22 18:13:05 +02:00
|
|
|
def reward(self, obs: np.ndarray) -> float:
|
2020-06-16 06:47:40 +02:00
|
|
|
pass
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
@abstractmethod
|
|
|
|
def create_maze() -> List[List[MazeCell]]:
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
2020-07-05 17:52:28 +02:00
|
|
|
class DistRewardMixIn:
|
|
|
|
REWARD_THRESHOLD: float = -1000.0
|
|
|
|
goals: List[MazeGoal]
|
|
|
|
scale: float
|
|
|
|
|
|
|
|
def reward(self, obs: np.ndarray) -> float:
|
|
|
|
return -self.goals[0].euc_dist(obs) / self.scale
|
|
|
|
|
|
|
|
|
2020-09-26 11:37:20 +02:00
|
|
|
class GoalRewardUMaze(MazeTask):
|
2020-09-24 16:40:33 +02:00
|
|
|
REWARD_THRESHOLD: float = 0.9
|
2020-09-26 11:37:20 +02:00
|
|
|
PENALTY: float = -0.0001
|
2020-09-24 16:40:33 +02:00
|
|
|
|
|
|
|
def __init__(self, scale: float) -> None:
|
|
|
|
super().__init__(scale)
|
2020-09-26 11:37:20 +02:00
|
|
|
self.goals = [MazeGoal(np.array([0.0, 2.0 * scale]))]
|
2020-09-24 16:40:33 +02:00
|
|
|
|
|
|
|
def reward(self, obs: np.ndarray) -> float:
|
2020-09-26 11:37:20 +02:00
|
|
|
return 1.0 if self.termination(obs) else self.PENALTY
|
2020-09-24 16:40:33 +02:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def create_maze() -> List[List[MazeCell]]:
|
|
|
|
E, B, R = MazeCell.EMPTY, MazeCell.BLOCK, MazeCell.ROBOT
|
|
|
|
return [
|
|
|
|
[B, B, B, B, B],
|
|
|
|
[B, R, E, E, B],
|
2020-09-26 11:37:20 +02:00
|
|
|
[B, B, B, E, B],
|
|
|
|
[B, E, E, E, B],
|
2020-09-24 16:40:33 +02:00
|
|
|
[B, B, B, B, B],
|
|
|
|
]
|
|
|
|
|
|
|
|
|
2020-09-26 11:37:20 +02:00
|
|
|
class DistRewardUMaze(GoalRewardUMaze, DistRewardMixIn):
|
2020-09-24 16:40:33 +02:00
|
|
|
pass
|
|
|
|
|
|
|
|
|
2020-09-26 11:37:20 +02:00
|
|
|
class GoalRewardSimpleRoom(GoalRewardUMaze):
|
2020-06-22 18:13:05 +02:00
|
|
|
def __init__(self, scale: float) -> None:
|
|
|
|
super().__init__(scale)
|
2020-09-26 11:37:20 +02:00
|
|
|
self.goals = [MazeGoal(np.array([2.0 * scale, 0.0]))]
|
2020-06-16 06:47:40 +02:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def create_maze() -> List[List[MazeCell]]:
|
|
|
|
E, B, R = MazeCell.EMPTY, MazeCell.BLOCK, MazeCell.ROBOT
|
|
|
|
return [
|
|
|
|
[B, B, B, B, B],
|
|
|
|
[B, R, E, E, B],
|
|
|
|
[B, B, B, B, B],
|
|
|
|
]
|
|
|
|
|
|
|
|
|
2020-09-26 11:37:20 +02:00
|
|
|
class DistRewardSimpleRoom(GoalRewardSimpleRoom, DistRewardMixIn):
|
2020-07-05 17:52:28 +02:00
|
|
|
pass
|
2020-06-16 06:47:40 +02:00
|
|
|
|
|
|
|
|
2020-07-05 17:52:28 +02:00
|
|
|
class GoalRewardPush(GoalRewardUMaze):
|
2020-09-21 06:27:41 +02:00
|
|
|
TOP_DOWN_VIEW = True
|
|
|
|
|
2020-06-22 18:13:05 +02:00
|
|
|
def __init__(self, scale: float) -> None:
|
|
|
|
super().__init__(scale)
|
|
|
|
self.goals = [MazeGoal(np.array([0.0, 2.375 * scale]))]
|
2020-06-16 06:47:40 +02:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def create_maze() -> List[List[MazeCell]]:
|
|
|
|
E, B, R = MazeCell.EMPTY, MazeCell.BLOCK, MazeCell.ROBOT
|
|
|
|
return [
|
|
|
|
[B, B, B, B, B],
|
|
|
|
[B, E, R, B, B],
|
|
|
|
[B, E, MazeCell.XY, E, B],
|
|
|
|
[B, B, E, B, B],
|
|
|
|
[B, B, B, B, B],
|
|
|
|
]
|
|
|
|
|
|
|
|
|
2020-07-05 17:52:28 +02:00
|
|
|
class DistRewardPush(GoalRewardPush, DistRewardMixIn):
|
|
|
|
pass
|
2020-06-16 06:47:40 +02:00
|
|
|
|
|
|
|
|
2020-07-05 17:52:28 +02:00
|
|
|
class GoalRewardFall(GoalRewardUMaze):
|
2020-09-21 06:27:41 +02:00
|
|
|
TOP_DOWN_VIEW = True
|
|
|
|
|
2020-06-22 18:13:05 +02:00
|
|
|
def __init__(self, scale: float) -> None:
|
|
|
|
super().__init__(scale)
|
|
|
|
self.goals = [MazeGoal(np.array([0.0, 3.375 * scale, 4.5]))]
|
2020-06-16 06:47:40 +02:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def create_maze() -> List[List[MazeCell]]:
|
|
|
|
E, B, C, R = MazeCell.EMPTY, MazeCell.BLOCK, MazeCell.CHASM, MazeCell.ROBOT
|
|
|
|
return [
|
|
|
|
[B, B, B, B],
|
|
|
|
[B, R, E, B],
|
|
|
|
[B, E, MazeCell.YZ, B],
|
|
|
|
[B, C, C, B],
|
|
|
|
[B, E, E, B],
|
|
|
|
[B, B, B, B],
|
|
|
|
]
|
|
|
|
|
|
|
|
|
2020-07-05 17:52:28 +02:00
|
|
|
class DistRewardFall(GoalRewardFall, DistRewardMixIn):
|
|
|
|
pass
|
2020-06-16 06:47:40 +02:00
|
|
|
|
|
|
|
|
2020-09-26 11:37:20 +02:00
|
|
|
class GoalRewardFall(GoalRewardUMaze):
|
|
|
|
TOP_DOWN_VIEW = True
|
|
|
|
|
|
|
|
def __init__(self, scale: float) -> None:
|
|
|
|
super().__init__(scale)
|
|
|
|
self.goals = [MazeGoal(np.array([0.0, 3.375 * scale, 4.5]))]
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def create_maze() -> List[List[MazeCell]]:
|
|
|
|
E, B, C, R = MazeCell.EMPTY, MazeCell.BLOCK, MazeCell.CHASM, MazeCell.ROBOT
|
|
|
|
return [
|
|
|
|
[B, B, B, B],
|
|
|
|
[B, R, E, B],
|
|
|
|
[B, E, MazeCell.YZ, B],
|
|
|
|
[B, C, C, B],
|
|
|
|
[B, E, E, B],
|
|
|
|
[B, B, B, B],
|
|
|
|
]
|
|
|
|
|
|
|
|
|
2020-07-05 17:52:28 +02:00
|
|
|
class GoalReward2Rooms(MazeTask):
|
2020-06-29 18:38:02 +02:00
|
|
|
REWARD_THRESHOLD: float = 0.9
|
2020-09-26 11:37:20 +02:00
|
|
|
PENALTY: float = -0.0001
|
2020-09-24 16:40:33 +02:00
|
|
|
MAZE_SIZE_SCALING: Scaling = Scaling(4.0, 4.0, 4.0)
|
2020-06-29 18:38:02 +02:00
|
|
|
|
|
|
|
def __init__(self, scale: float) -> None:
|
|
|
|
super().__init__(scale)
|
|
|
|
self.goals = [MazeGoal(np.array([0.0, 4.0 * scale]))]
|
|
|
|
|
|
|
|
def reward(self, obs: np.ndarray) -> float:
|
2020-06-30 06:17:11 +02:00
|
|
|
for goal in self.goals:
|
|
|
|
if goal.neighbor(obs):
|
|
|
|
return goal.reward_scale
|
2020-09-26 11:37:20 +02:00
|
|
|
return self.PENALTY
|
2020-06-29 18:38:02 +02:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def create_maze() -> List[List[MazeCell]]:
|
|
|
|
E, B, R = MazeCell.EMPTY, MazeCell.BLOCK, MazeCell.ROBOT
|
|
|
|
return [
|
|
|
|
[B, B, B, B, B, B, B, B],
|
|
|
|
[B, R, E, E, E, E, E, B],
|
|
|
|
[B, E, E, E, E, E, E, B],
|
|
|
|
[B, B, B, B, B, E, B, B],
|
|
|
|
[B, E, E, E, E, E, E, B],
|
|
|
|
[B, E, E, E, E, E, E, B],
|
|
|
|
[B, B, B, B, B, B, B, B],
|
|
|
|
]
|
|
|
|
|
|
|
|
|
2020-07-05 17:52:28 +02:00
|
|
|
class DistReward2Rooms(GoalReward2Rooms, DistRewardMixIn):
|
|
|
|
pass
|
2020-06-29 18:38:02 +02:00
|
|
|
|
|
|
|
|
2020-07-05 17:52:28 +02:00
|
|
|
class SubGoal2Rooms(GoalReward2Rooms):
|
2020-06-29 18:38:02 +02:00
|
|
|
def __init__(self, scale: float) -> None:
|
|
|
|
super().__init__(scale)
|
|
|
|
self.goals.append(MazeGoal(np.array([5.0 * scale, 0.0 * scale]), 0.5, GREEN))
|
|
|
|
|
|
|
|
|
2020-07-05 17:52:28 +02:00
|
|
|
class GoalReward4Rooms(MazeTask):
|
2020-06-22 18:13:05 +02:00
|
|
|
REWARD_THRESHOLD: float = 0.9
|
2020-09-26 11:37:20 +02:00
|
|
|
PENALTY: float = -0.0001
|
2020-09-24 16:40:33 +02:00
|
|
|
MAZE_SIZE_SCALING: Scaling = Scaling(4.0, 4.0, 4.0)
|
2020-06-22 18:13:05 +02:00
|
|
|
|
|
|
|
def __init__(self, scale: float) -> None:
|
|
|
|
super().__init__(scale)
|
2020-09-07 10:44:57 +02:00
|
|
|
self.goals = [MazeGoal(np.array([6.0 * scale, -6.0 * scale]))]
|
2020-06-22 18:13:05 +02:00
|
|
|
|
|
|
|
def reward(self, obs: np.ndarray) -> float:
|
|
|
|
for goal in self.goals:
|
|
|
|
if goal.neighbor(obs):
|
|
|
|
return goal.reward_scale
|
2020-09-26 11:37:20 +02:00
|
|
|
return self.PENALTY
|
2020-06-22 18:13:05 +02:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def create_maze() -> List[List[MazeCell]]:
|
|
|
|
E, B, R = MazeCell.EMPTY, MazeCell.BLOCK, MazeCell.ROBOT
|
|
|
|
return [
|
|
|
|
[B, B, B, B, B, B, B, B, B],
|
2020-09-07 10:44:57 +02:00
|
|
|
[B, E, E, E, B, E, E, E, B],
|
2020-06-22 18:13:05 +02:00
|
|
|
[B, E, E, E, E, E, E, E, B],
|
|
|
|
[B, E, E, E, B, E, E, E, B],
|
|
|
|
[B, B, E, B, B, B, E, B, B],
|
|
|
|
[B, E, E, E, B, E, E, E, B],
|
|
|
|
[B, E, E, E, E, E, E, E, B],
|
2020-09-07 10:44:57 +02:00
|
|
|
[B, R, E, E, B, E, E, E, B],
|
2020-06-22 18:13:05 +02:00
|
|
|
[B, B, B, B, B, B, B, B, B],
|
|
|
|
]
|
|
|
|
|
|
|
|
|
2020-07-05 17:52:28 +02:00
|
|
|
class DistReward4Rooms(GoalReward4Rooms, DistRewardMixIn):
|
|
|
|
pass
|
2020-06-29 18:38:02 +02:00
|
|
|
|
|
|
|
|
2020-07-05 17:52:28 +02:00
|
|
|
class SubGoal4Rooms(GoalReward4Rooms):
|
2020-06-22 18:13:05 +02:00
|
|
|
def __init__(self, scale: float) -> None:
|
|
|
|
super().__init__(scale)
|
2020-06-29 18:38:02 +02:00
|
|
|
self.goals += [
|
2020-09-07 10:44:57 +02:00
|
|
|
MazeGoal(np.array([0.0 * scale, -6.0 * scale]), 0.5, GREEN),
|
2020-06-22 18:13:05 +02:00
|
|
|
MazeGoal(np.array([6.0 * scale, 0.0 * scale]), 0.5, GREEN),
|
|
|
|
]
|
|
|
|
|
|
|
|
|
2020-09-16 18:27:38 +02:00
|
|
|
class GoalRewardTRoom(MazeTask):
|
|
|
|
REWARD_THRESHOLD: float = 0.9
|
2020-09-26 11:37:20 +02:00
|
|
|
PENALTY: float = -0.0001
|
2020-09-24 16:40:33 +02:00
|
|
|
MAZE_SIZE_SCALING: Scaling = Scaling(4.0, 4.0, 4.0)
|
2020-09-16 18:27:38 +02:00
|
|
|
|
|
|
|
def __init__(
|
2020-09-24 16:40:33 +02:00
|
|
|
self, scale: float, goals: List[Tuple[float, float]] = [(2.0, -3.0)],
|
2020-09-16 18:27:38 +02:00
|
|
|
) -> None:
|
|
|
|
super().__init__(scale)
|
|
|
|
self.goals = []
|
|
|
|
for x, y in goals:
|
|
|
|
self.goals.append(MazeGoal(np.array([x * scale, y * scale])))
|
|
|
|
|
|
|
|
def reward(self, obs: np.ndarray) -> float:
|
|
|
|
for goal in self.goals:
|
|
|
|
if goal.neighbor(obs):
|
|
|
|
return goal.reward_scale
|
2020-09-26 11:37:20 +02:00
|
|
|
return self.PENALTY
|
2020-09-16 18:27:38 +02:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def create_maze() -> List[List[MazeCell]]:
|
|
|
|
E, B, R = MazeCell.EMPTY, MazeCell.BLOCK, MazeCell.ROBOT
|
|
|
|
return [
|
|
|
|
[B, B, B, B, B, B, B],
|
|
|
|
[B, E, E, B, E, E, B],
|
|
|
|
[B, E, E, B, E, E, B],
|
|
|
|
[B, E, B, B, B, E, B],
|
|
|
|
[B, E, E, R, E, E, B],
|
|
|
|
[B, B, B, B, B, B, B],
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
class DistRewardTRoom(GoalRewardTRoom, DistRewardMixIn):
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
2020-09-26 11:37:20 +02:00
|
|
|
class GoalRewardBlockMaze(GoalRewardUMaze):
|
|
|
|
OBSERVE_BLOCKS: bool = True
|
|
|
|
|
|
|
|
def __init__(self, scale: float) -> None:
|
|
|
|
super().__init__(scale)
|
|
|
|
self.goals = [MazeGoal(np.array([0.0, 3.0 * scale]))]
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def create_maze() -> List[List[MazeCell]]:
|
|
|
|
E, B, R, M = MazeCell.EMPTY, MazeCell.BLOCK, MazeCell.ROBOT, MazeCell.XY
|
|
|
|
return [
|
|
|
|
[B, B, B, B, B],
|
|
|
|
[B, R, E, E, B],
|
|
|
|
[B, B, B, M, B],
|
|
|
|
[B, E, E, E, B],
|
|
|
|
[B, E, E, E, B],
|
|
|
|
[B, B, B, B, B],
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
class DistRewardBlockMaze(GoalRewardBlockMaze, DistRewardMixIn):
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
2020-06-16 06:47:40 +02:00
|
|
|
class TaskRegistry:
|
|
|
|
REGISTRY: Dict[str, List[Type[MazeTask]]] = {
|
2020-09-24 16:40:33 +02:00
|
|
|
"SimpleRoom": [DistRewardSimpleRoom, GoalRewardSimpleRoom],
|
2020-07-05 17:52:28 +02:00
|
|
|
"UMaze": [DistRewardUMaze, GoalRewardUMaze],
|
|
|
|
"Push": [DistRewardPush, GoalRewardPush],
|
|
|
|
"Fall": [DistRewardFall, GoalRewardFall],
|
|
|
|
"2Rooms": [DistReward2Rooms, GoalReward2Rooms, SubGoal2Rooms],
|
|
|
|
"4Rooms": [DistReward4Rooms, GoalReward4Rooms, SubGoal4Rooms],
|
2020-09-16 18:27:38 +02:00
|
|
|
"TRoom": [DistRewardTRoom, GoalRewardTRoom],
|
2020-09-26 11:37:20 +02:00
|
|
|
"BlockMaze": [DistRewardBlockMaze, GoalRewardBlockMaze],
|
2020-06-16 06:47:40 +02:00
|
|
|
}
|
2020-06-29 18:38:02 +02:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def keys() -> List[str]:
|
|
|
|
return list(TaskRegistry.REGISTRY.keys())
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def tasks(key: str) -> List[Type[MazeTask]]:
|
|
|
|
return TaskRegistry.REGISTRY[key]
|