Spikey/config.yaml

82 lines
2.6 KiB
YAML
Raw Normal View History

2024-05-24 22:01:59 +02:00
name: DEFAULT
project: Spikey
slurm:
name: 'Spikey_{config[name]}'
partitions:
- single
standard_output: ./reports/slurm/out_%A_%a.log
standard_error: ./reports/slurm/err_%A_%a.log
num_parallel_jobs: 50
2024-05-25 01:20:24 +02:00
cpus_per_task: 8
memory_per_cpu: 4000
2024-05-24 22:01:59 +02:00
time_limit: 1440 # in minutes
ntasks: 1
venv: '.venv/bin/activate'
sh_lines:
- 'mkdir -p {tmp}/wandb'
- 'mkdir -p {tmp}/local_pycache'
- 'export PYTHONPYCACHEPREFIX={tmp}/local_pycache'
runner: spikey
scheduler:
reps_per_version: 1
agents_per_job: 1
reps_per_agent: 1
wandb:
project: '{config[project]}'
group: '{config[name]}'
job_type: '{delta_desc}'
name: '{job_id}_{task_id}:{run_id}:{rand}={config[name]}_{delta_desc}'
2024-05-24 23:02:24 +02:00
#tags:
# - '{config[env][name]}'
# - '{config[algo][name]}'
2024-05-24 22:01:59 +02:00
sync_tensorboard: False
monitor_gym: False
save_code: False
---
name: Test
2024-05-24 23:02:24 +02:00
import: $
2024-05-24 22:01:59 +02:00
2024-05-25 17:31:08 +02:00
latent_projector:
2024-05-25 17:44:18 +02:00
type: rnn # Options: 'fc', 'rnn'
2024-05-25 21:40:07 +02:00
input_size: 195 # =0.01s 19531 # =1s Input size for the Latent Projector (length of snippets).
latent_size: 4 # Size of the latent representation before message passing.
2024-05-25 20:27:54 +02:00
#layer_shapes: [256, 32] # List of layer sizes for the latent projector (if type is 'fc').
#activations: ['ReLU', 'ReLU'] # Activation functions for the latent projector layers (if type is 'fc').
2024-05-25 21:40:07 +02:00
rnn_hidden_size: 4 # Hidden size for the RNN projector (if type is 'rnn').
2024-05-25 20:27:54 +02:00
rnn_num_layers: 1 # Number of layers for the RNN projector (if type is 'rnn').
2024-05-25 17:31:08 +02:00
middle_out:
2024-05-25 21:40:07 +02:00
output_size: 4 # Size of the latent representation after message passing.
2024-05-25 20:27:54 +02:00
num_peers: 3 # Number of most correlated peers to consider.
2024-05-24 22:01:59 +02:00
predictor:
2024-05-25 21:40:07 +02:00
layer_shapes: [4] # List of layer sizes for the predictor.
activations: ['ELU'] # Activation functions for the predictor layers.
2024-05-24 22:01:59 +02:00
training:
2024-05-25 21:40:07 +02:00
epochs: 1024 # Number of training epochs.
batch_size: 16 # 64 # Batch size for training.
num_batches: 4 # Batches per epoch
learning_rate: 0.05 # Learning rate for the optimizer.
2024-05-25 20:43:45 +02:00
eval_freq: -1 # 8 # Frequency of evaluation during training (in epochs).
2024-05-24 22:01:59 +02:00
save_path: models # Directory to save the best model and encoder.
2024-05-25 17:31:08 +02:00
evaluation:
full_compression: false # Perform full compression during evaluation
2024-05-24 22:01:59 +02:00
bitstream_encoding:
2024-05-25 17:44:18 +02:00
type: identity # Options: 'arithmetic', 'identity', 'bzip2'
2024-05-24 22:01:59 +02:00
data:
url: https://content.neuralink.com/compression-challenge/data.zip # URL to download the dataset.
directory: data # Directory to extract and store the dataset.
split_ratio: 0.8 # Ratio to split the data into train and test sets.
2024-05-25 20:27:54 +02:00
cut_length: null # Optional length to cut sequences to.
2024-05-24 23:02:24 +02:00
profiler:
2024-05-25 17:31:08 +02:00
enable: false